Skip to main content
Log in

Influence of high-pressure torsion on microstructural evolution in an Al–Zn–Mg–Cu alloy

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A commercial age-hardenable Al-7136 alloy was successfully processed by high-pressure torsion (HPT) at room temperature through 1/8 to 4 turns. Microhardness measurements showed significant hardening even after 1/8 turn with the average hardness value reaching a maximum after 1 turn and then slowly decreasing. Higher hardness values were attained by processing the alloy through one pass of equal-channel angular pressing in a supersaturated condition at room temperature and then applying HPT for 1 or 2 turns. Microstructural observations revealed the possibility of achieving true nanometer grain sizes of <100 nm after processing at room temperature. There were variations in hardness with imposed strain due to the fragmentation and subsequent growth of precipitates during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  2. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  3. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  4. Sergueeva AV, Stolyarov VV, Valiev RZ, Mukherjee AK (2001) Scripta Mater 45:747

    Article  CAS  Google Scholar 

  5. Valiev RZ, Sergueeva AV, Mukherjee AK (2003) Scripta Mater 49:669

    Article  CAS  Google Scholar 

  6. Wei Q, Zhang HT, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ, Dowding RJ, Magness L, Cho K (2006) Acta Mater 54:4079

    Article  CAS  Google Scholar 

  7. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A477:366

    CAS  Google Scholar 

  8. Murashkin MYu, Kil′mametov AR, Valiev RZ (2008) Phys Met Metal 106:90

    Article  Google Scholar 

  9. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  10. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  11. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2005) Mater Sci Eng A410–411:277

    Google Scholar 

  12. Pippan R, Vorhauer A, Wetscher F, Faleschini M, Hafok M, Sabirov I (2006) Mater Sci Forum 503–504:407

    Article  Google Scholar 

  13. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  14. Zhilyaev AP, McNelley TR, Langdon TG (2007) J Mater Sci 42:1517. doi:10.1007/s10853-006-0628-0

    Article  CAS  ADS  Google Scholar 

  15. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  16. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  17. Xu C, Horita Z, Langdon TG (2008) J Mater Sci 43:7286. doi:10.1007/s10853-008-2624-z

    Article  CAS  ADS  Google Scholar 

  18. Xu C, Langdon TG (2009) Mater Sci Eng A503:71

    CAS  Google Scholar 

  19. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:91

    Article  Google Scholar 

  20. Xu C, Horita Z, Langdon TG (2010) Mater Trans 51:2

    Article  CAS  Google Scholar 

  21. Pippan R, Wetscher F, Hafok M, Vorhauer A, Sabirov S (2006) Adv Eng Mater 8:1046

    Article  CAS  Google Scholar 

  22. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solids 56:1186

    Article  CAS  ADS  Google Scholar 

  23. Molotnikov A (2008) Mater Sci Forum 584–586:1051

    Article  Google Scholar 

  24. Sha G, Wang YB, Liao XZ, Duan ZC, Ringer SP, Langdon TG (2009) Acta Mater 57:3123

    Article  CAS  Google Scholar 

  25. Sha G, Ringer SP, Duan ZC, Langdon TG (2009) Intl J Mater Res 100:1674

    CAS  Google Scholar 

  26. Figueiredo RB, Duan Z, Kawasaki M, Langdon TG (2010) Mater Sci Forum 633–634:341

    Google Scholar 

  27. Duan ZC, Chinh NQ, Xu C, Langdon TG (2010) Metall Mater Trans A 41A:802

  28. Chinh NQ, Gubicza J, Czeppe T, Lendvai J, Xu C, Valiev RZ, Langdon TG (2009) Mater Sci Eng A516:248

    CAS  Google Scholar 

  29. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143

    Article  CAS  Google Scholar 

  30. Xu C, Langdon TG (2007) J Mater Sci 42:1542. doi:10.1007/s10853-006-0899-5

    Article  CAS  ADS  Google Scholar 

  31. Xu C, Furukawa M, Horita Z, Langdon TG (2003) Acta Mater 51:6139

    Article  CAS  Google Scholar 

  32. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  33. Edalati K, Fujioka T, Horita Z (2008) Mater Sci Eng A497:169

    Google Scholar 

  34. Ito Y, Horita Z (2009) Mater Sci Eng A503:32

    CAS  Google Scholar 

  35. Edalati K, Fujioka T, Horita Z (2009) Mater Trans 50:44

    Article  CAS  Google Scholar 

  36. Harai Y, Ito Y, Horita Z (2008) Scripta Mater 58:469

    Article  CAS  Google Scholar 

  37. Edalati K, Horita Z (2009) Mater Trans 50:92

    Article  CAS  Google Scholar 

  38. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A391:377

    CAS  Google Scholar 

  39. Zhilyaev AP, Gimazov AA, Raab GI, Langdon TG (2008) Mater Sci Eng A486:123

    CAS  Google Scholar 

  40. Zhilyaev AP, Gimazov AA, Soshnikova EP, Révész Á, Langdon TG (2008) Mater Sci Eng A489:207

    CAS  Google Scholar 

  41. Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Int J Mater Res 100:1653

    CAS  Google Scholar 

  42. Ungár T, Schafler E, Hanák P, Bernstorff S, Zehetbauer M (2005) Z Metallkd 96:578

    Google Scholar 

  43. Zehetbauer M, Schafler E, Ungár T (2005) Z Metallkd 96:1044

    CAS  Google Scholar 

  44. Sauvage X, Wetscher F, Pareige P (2005) Acta Mater 53:2127

    CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Science Foundation of the United States under Grant No. DMR-0855009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chao Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Z.C., Liao, X.Z., Kawasaki, M. et al. Influence of high-pressure torsion on microstructural evolution in an Al–Zn–Mg–Cu alloy. J Mater Sci 45, 4621–4630 (2010). https://doi.org/10.1007/s10853-010-4400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4400-0

Keywords

Navigation