Skip to main content
Log in

Microwave synthesis and physical characterization of tin(II) phosphate glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tin phosphate glasses in the SnO–P2O5 binary diagram have been prepared by using a domestic microwave-heating device. Microwaves provide an extremely facile and automatically temperature-controlled route to the synthesis of glasses due to the specific dielectric properties of each chemical composition. Typical melting time is no longer than 10 min, limiting the oxidation of Sn2+ and the melt can be quenched into glass. The glass transition temperature increases with the SnO content confirming the depolymerization of the vitreous network, as expected by the relative fraction of the different Qn structural units deduced from NMR experiments. Concerning the mechanical properties, the Vickers hardness and the fracture toughness decrease while the thermal expansion coefficient and the different elastic moduli remain constants. These results confirm that those characteristics are not very sensible to structural considerations. On the contrary, the chemical durability of Sn2P2O7, determined from the weight loss method, is 300 times higher than that of Sn(PO3)2. Furthermore, Sn2P2O7 is the only glass composition that exhibits a devitrification phenomenon leading to the low-temperature phase of the crystalline tin(II) pyrophosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Donald IW (1993) J Mater Sci 28:2841. doi:10.1007/BF00354689

    Article  CAS  ADS  Google Scholar 

  2. Hudecek J (1991) Engineered materials handbook, vol 4. ASM International, Metals Park, p 1069

  3. US Federal Registry (1979) 44:60980

  4. Morena R (2000) J Non-Cryst Solids 263 & 264:382

    Article  Google Scholar 

  5. Holland D, Howes AP, Smith ME, Hannon AC (2002) J Phys Condens Matter 14:13609

    Article  CAS  ADS  Google Scholar 

  6. Vaidhyanathan B, Ganguli M, Rao KJ (1994) J Solid State Chem 113:448

    Article  CAS  ADS  Google Scholar 

  7. Vaidhyanathan B, Prem Kumar C, Rao JL et al (1998) J Phys Chem Solids 59:121

    Article  CAS  ADS  Google Scholar 

  8. Ghussn L, Martinelli JR (2004) J Mater Sci 39:1371. doi:10.1023/B:JMSC.0000013899.75724.e1

    Article  CAS  ADS  Google Scholar 

  9. Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Magn Reson Chem 40:70

    Article  CAS  Google Scholar 

  10. Blessing GV (1990) Dynamic elastic modulus measurements in materials, ASTM STP 1045. ASTM, Philadelphia

  11. Lippma E, Magi M, Samoson A, Engelhardt G, Grimmer A (1980) J Am Chem Soc 102:4889

    Article  Google Scholar 

  12. Van Wazer JR (1958) Phosphorus and its compounds. Interscience, New York

    Google Scholar 

  13. Bekaert E, Montagne L, Delevoye L, Palavit G, Revel B (2004) CR Chim 7:377

    Article  CAS  Google Scholar 

  14. Day DE, Wu Z, Ray CS, Hrma P (1998) J Non-Cryst Solids 241:1

    Article  CAS  ADS  Google Scholar 

  15. Chernaya VV, Mitiaev AS, Chizhov PS, Dikarev EV, Shpanchenko RV, Antipov EV, Korolenko MV, Fabritchnyi PB (2005) Chem Mater 17:284

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Rocherullé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hémono, N., Chenu, S., Lebullenger, R. et al. Microwave synthesis and physical characterization of tin(II) phosphate glasses. J Mater Sci 45, 2916–2920 (2010). https://doi.org/10.1007/s10853-010-4283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4283-0

Keywords

Navigation