Skip to main content

Advertisement

Log in

Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond–metal joints

  • EUROMAT 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The reliability and integrity of diamond cutting tools depend on the properties of diamond–metal joints as created by a brazing process. Block-shaped monocrystalline diamonds were brazed onto a steel substrate (X2CrNiMo 18-14-3), using silver–copper based Cusil-ABA™ (Ag–35wt%Cu–1.75wt%Ti) filler alloy. The experimental procedure includes a thorough microstructural investigation of the filler alloy, the determination of the induced residual stresses by Raman spectroscopy as well as the joint’s shear strength utilizing a special shear device. The brazing processes were carried out at 850, 880 and 910 °C for dwell durations of 10 and 30 min, respectively. At the steel interface two interlayers develop. The layers grow with extended dwell duration and higher brazing temperature. The residual stresses only slightly depend on the brazing parameters and exhibit a maximum value of −400 MPa. Unlike the residual stresses, the shear strength strongly depends on the brazing parameters and thus on the microstructure. Three failure modes could be identified; a ductile fracture in the filler alloy, a brittle fracture in the interlayers and a partly shattering of the diamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burkhard G, Rehsteiner F (2002) CIRP Ann Manuf Technol 51:271

    Article  Google Scholar 

  2. Fu YC, Xiao B, Xu JH, Xu HJ (2004) Key Eng Mater 259-2:73

    Article  Google Scholar 

  3. Sung CM (1999) Diamond Relat Mater 8:1540

    Article  CAS  Google Scholar 

  4. Sung JC, Sung M (2009) Int J Refract Met Hard Mater 27:382

    Article  CAS  Google Scholar 

  5. Klotz UE, Liu CL, Khalid FA, Elsener HR (2008) Mater Sci Eng A 495:265

    Article  CAS  Google Scholar 

  6. Liu CL (2007) Characterisation and modelling of interface reactions between diamond and active brazing alloys. Diss. ETH No. 17469, ETH Zurich, Switzerland

  7. Paiva OC, Barbosa MA (2008) Mater Sci Eng A 480:306

    Article  CAS  Google Scholar 

  8. De Wolf I (2003) Spectrosc Eur 15:6

    Google Scholar 

  9. Knight DS, White WB (1989) J Mater Res 4:385

    Article  ADS  CAS  Google Scholar 

  10. Olson JM, Dawes MJ (1996) J Mater Res 11:1765

    Article  ADS  CAS  Google Scholar 

  11. Aleksandrov IV, Goncharov AF, Stishov SM (1986) JETP Lett 44:611

    ADS  Google Scholar 

  12. Aleksandrov IV, Goncharov AP, Makarenko IN, Zisman AN, Jakovenko EV, Stishov SM (1989) High Press Res 1:333

    Article  ADS  Google Scholar 

  13. Boppart H, Van Straaten J, Silvera IF (1985) Phys Rev B 32:1423

    Article  ADS  CAS  Google Scholar 

  14. Grimsditch MH, Anastassakis E, Cardona M (1978) Phys Rev B 18:901

    Article  ADS  CAS  Google Scholar 

  15. Hanfland M, Syassen K, Fahy S, Louie SG, Cohen ML (1985) Phys Rev B 31:6896

    Article  ADS  CAS  Google Scholar 

  16. Mitra SS, Brafman O, Daniels WB, Crawford RK (1969) Phys Rev 186:942

    Article  ADS  CAS  Google Scholar 

  17. Tardieu A, Cansell F, Petitet JP (1990) J Appl Phys 68:3243

    Article  ADS  CAS  Google Scholar 

  18. Whalley E, Lavergne A, Wong PTT (1976) Rev Sci Instrum 47:845

    Article  ADS  CAS  Google Scholar 

  19. Occelli F, Loubeyre P, Letoullec R (2003) Nat Mater 2:151

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Kunc K, Loa I, Syassen K (2003) Phys Rev B 68:094107

    Article  ADS  CAS  Google Scholar 

  21. Nielsen OH (1986) Physica B 139 & 140:202

    Google Scholar 

  22. Nielsen OH (1986) Phys Rev B 34:5808

    Article  ADS  CAS  Google Scholar 

  23. Klocke F, Merbecks T (2001) Characterization of vitrified cBN grinding wheels. 4th int mach grind conf, Society of Manufacturing Engineers, Michigan

  24. Dos Santos SI, Balzaretti NM, Da Jornada JAH (2006) Diamond Relat Mater 15:1457

    Article  CAS  Google Scholar 

  25. Siegmann S, Dvorak M, Gruetzner H, Nassenstein K, Walter A (2005) Proc Int Therm Spray Conf 2005:823

    Google Scholar 

  26. Mizuhara H, Huebel E, Oyama T (1989) Am Ceram Soc Bull 68:1591

    CAS  Google Scholar 

  27. ElementSix-website (2009) Isle of Man, United Kingdom. http://www.e6.com. Accessed 9 Oct 2009

  28. Wegst C, Wegst M (2007) Nachschlagewerk Stahlschüssel. Verlag Stahlschüssel Wegst GmbH, Marbach

    Google Scholar 

  29. Field JE (1979) The properties of diamond. Academic Press, London

    Google Scholar 

  30. Ikawa N, Shimada S, Ono T (1976) Technol Rep Osaka Univ 26:245

    CAS  Google Scholar 

  31. Ganesan S, Maradudin AA, Oitmaa J (1970) Ann Phys 56:556

    Article  ADS  CAS  Google Scholar 

  32. Anastassakis E, Pinczuk A, Burstein E, Pollak FH, Cardona M (1970) Solid State Commun 8:133

    Article  ADS  CAS  Google Scholar 

  33. Englert T, Abstreiter G, Pontcharra J (1980) Solid-State Electron 23:31

    Article  ADS  CAS  Google Scholar 

  34. Klocek P (1991) Handbook of infrared optical materials. Marcel Dekker, Inc., New York

    Google Scholar 

  35. Cousins CSG (2003) Phys Rev B 67:024107-1-13

    ADS  Google Scholar 

  36. Chen KH, Lai YL, Lin JC, Song KJ, Chen LC, Huang CY (1995) Diamond Relat Mater 4:460

    Article  CAS  Google Scholar 

  37. Loechelt GH, Cave NG, Menendez J (1999) J Appl Phys 86:6164

    Article  ADS  CAS  Google Scholar 

  38. Feng JC, Li YL, He P, Liu HJ, Yan JC (2005) Mater Sci Technol 21:255

    Article  CAS  Google Scholar 

  39. Kar A, Ghosh M, Ray AK, Ray AK (2008) Mater Sci Eng A 498:283

    Article  CAS  Google Scholar 

  40. Duhaj P, Sebo P, Svec P, Janickovic D (1999) Mater Sci Eng A 271:181

    Article  Google Scholar 

  41. Groegler T, Zeiler E, Hoerner A, Rosiwal SM, Singer RF (1998) Surf Coat Technol 98:1079

    Article  Google Scholar 

  42. Scardi P, Leoni M, Cappuccio G, Sessa V, Terranova ML (1997) Diamond Relat Mater 6:807

    Article  CAS  Google Scholar 

  43. Fu YQ, Du HJ, Sun CQ (2003) Thin Solid Films 424:107

    Article  ADS  CAS  Google Scholar 

  44. Fan QH, Gracio J, Pereira E, Teixeira V, Tavares CJ (2001) Thin Solid Films 398:265

    Article  ADS  Google Scholar 

  45. Ralchenko VG, Obraztsova ED, Korotushenko KG, Smolin AA, Pimenov SM, Pereverzev VG (1995) Mechanical behaviour of diamond and other forms of carbon, Mater Res Soc Symp Proc, Materials Research Society, Pittsburgh, PA ,vol 383, pp 153–158

  46. Kohzaki M, Higuchi K, Noda S, Uchida K (1993) Diamond Relat Mater 2:612

    Article  CAS  Google Scholar 

  47. Qin YQ, Feng JC (2007) Mater Sci Eng A 454:322

    Article  CAS  Google Scholar 

  48. Sun FL, Feng JC, Li D (2001) J Mater Process Technol 115:333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swiss National Science Foundation for the financial support under the number 200021-117847. S.B. is grateful to Dr. H.-R. Elsener (Laboratory for Joining and Interface Technology, Empa, Duebendorf) for his support in brazing and Dr. T. Wermelinger (Laboratory for Nanometallurgy, ETH, Zurich) for fruitful discussions about Raman spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Buhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, S., Leinenbach, C., Spolenak, R. et al. Influence of the brazing parameters on microstructure, residual stresses and shear strength of diamond–metal joints. J Mater Sci 45, 4358–4368 (2010). https://doi.org/10.1007/s10853-010-4260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4260-7

Keywords

Navigation