Skip to main content

Advertisement

Log in

Evolution of microstructure and mechanical properties during quenching and tempering of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of quenching and tempering treatments on the development of microstructure and mechanical properties of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel were investigated. Samples were austenitized at 1123–1323 K for 2400 s and oil quenched (OQ) to produce mixed microstructures. Tempering was carried out at 473–773 K for 2–3 h. Phase transformation temperatures were measured using dilatometer. The microstructures were characterized using optical and scanning electron microscope. SEM–EDS analysis was carried out to determine the type and size of non-metallic inclusions. Volume percent of retained austenite was measured by X-ray diffraction technique. Hardness, tensile properties, and impact energies were also determined for all heat treated conditions. Fractography of impact specimens were done using stereomicroscope and SEM. The results showed that newly developed steel exhibited peak hardness, yield strength, and tensile strength of about 600 HV, 1760 MPa, and 1900 MPa, respectively, when OQ from 1203 K and tempered in between 473 and 573 K, combined with adequate ductility and impact toughness. Decrease in hardness and strength was observed with increasing tempering temperature whereas the impact energy was stable up to 623 K, however, impact energy was found to decrease above 632 K due to temper martensite embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sreekumar K, Murty MSP, Natarajan A, Sinha PP (1982) Trans Indian Inst Met 35:349

    CAS  Google Scholar 

  2. Tartaglia JM (2009) J Mater Eng Perform (published online)

  3. Tomita Y, Okabayashi K (1983) Met Trans A 14A:485

    Article  Google Scholar 

  4. Thomas TS, Hickey CF (1989) J Heat Treat 7(1):49

    Article  CAS  Google Scholar 

  5. Holt JM, Mindlin H, Ho CY (1996) Structural alloys handbook. CINDAS/Purdue University, USA

  6. Youngblood JL, Raghavan M (1977) Metall Trans A 8A:1439

    CAS  ADS  Google Scholar 

  7. Khan SA, Bhadeshia HKDH (1990) Mater Sci Eng A 129:257

    Article  Google Scholar 

  8. Rajan KM, Narasimhan K (2002) J Mater Eng Perform 11:444

    Article  CAS  Google Scholar 

  9. R. Steiner (1993) ASM handbook, 10th edn, vol 1. ASM International Metals Park, OH

  10. Steven W, Haynes AG (1956) J Iron Steel Inst 183:349

    CAS  Google Scholar 

  11. Krauss G (1990) Principles of heat treatment and processing of steels. ASM Int, USA, pp 43–87

  12. Roberts VJ (1997) Metall Trans 1:3287

    Google Scholar 

  13. Ohtani H, Terasaki F, Kunitake T (1972) Trans Iron Steel Inst Jpn 12:118

    Google Scholar 

  14. Maropoulos S, Paul JDH, Ridley N (1993) Mater Sci Technol 9:1014

    CAS  Google Scholar 

  15. Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, USA

    Google Scholar 

  16. Ridley N, Stuart H, Zwell L (1961) Trans AIME 245:1834

    Google Scholar 

  17. Vorob’eva EP, Chadov GA, Kansafarova TT, Gervas’ev MA (2000) Met Sci Heat Treat 42(11–12):444

    Article  Google Scholar 

  18. Kiessling R, Lange N (1976) Non-metallic inclusions in steel. The Metal Society, London, pp 50–110

  19. Jie S, Tian-dong X, Xiao-jun W, Xiao-chun F (2007) Trans Nonferrous Met Soc China 17:1165

    Google Scholar 

  20. Bohmer HJ (1993) ASTM STP 1195. American Society for Testing and Materials, Philadelphia, pp 211–221

  21. Gigovic-Gekic A, Oruc M, Vitez I, Vujicic B (2009) Metallurgija 48(1):29

    CAS  Google Scholar 

  22. Li-feng Zhang (2004) Shandong Metall 26(6):1 (in Chinese)

    Google Scholar 

  23. Kremnev LS, Svishchenko VV, Cheprasov DP (1997) Met Sci Heat Treat 39(9–10):367

    Article  CAS  Google Scholar 

  24. Bhadeshia HKDH (2002) Bainite in steels, 2nd edn. Institute of Materials, London

    Google Scholar 

  25. Peet M, Babu SS, Miller MK, Bhadeshia HKDH (2004) Scripta Mater 50:1277

    Article  CAS  Google Scholar 

  26. Kozeschnik E, Bhadeshia HKDH (2008) Mater Sci Technol 24(3):343

    Article  CAS  Google Scholar 

  27. Pickering FB (1979) Phase transformations. Institution of Metallurgists, London, 2 VI 7

  28. Deliry J (1965) Mem Sci Rev Metall 62:527

    CAS  Google Scholar 

  29. Pomey J (1966) Mem Sci Rev Metall 63:507

    Google Scholar 

  30. Bhadeshia HKDH, Edmonds DV (1979) Metall Trans A 10A:895

    CAS  ADS  Google Scholar 

  31. Sandvik BPJ (1982) Metall Trans A 13A:777

    ADS  Google Scholar 

  32. Bhadeshia HKDH (1982) J Phys Colloque 43:443

    Google Scholar 

  33. Wang J, Vander Wolk PJ, Vander Zwaag S (2000) J Mater Sci 35:4393. doi:10.1023/A:1004865209116

    Article  CAS  Google Scholar 

  34. Nam WJ, Kim DS, Ahn ST (2003) J Mater Sci 38:3611. doi:10.1023/A:1025625330442

    Article  CAS  Google Scholar 

  35. Zhang M, Qian J, Haicheng G (2007) J Mater Eng Perform 16(5):635

    Article  CAS  Google Scholar 

  36. Tomita Y (1995) J Mater Sci 30:105. doi:10.1007/BF00352138

    Article  CAS  ADS  Google Scholar 

  37. Jacques PJ (2004) Curr Opin Solid State Mater Sci 8:259

    Article  CAS  Google Scholar 

  38. DeCooman BC (2004) Curr Opin Solid State Mater Sci 8:285

    Article  CAS  Google Scholar 

  39. Allten G, Payson P (1953) Trans Am Soc Met 45:498

    Google Scholar 

  40. Shih H, Averbach BL, Cohen M (1956) Trans Am Soc Met 48:66

    Google Scholar 

  41. Capus JM (1962) J Iron Steel Inst 200:922

    CAS  Google Scholar 

  42. Kula EB, Anctil AA (1969) J Mater 4:817

    Article  CAS  Google Scholar 

  43. Briant CL (1989) Mater Sci Technol 5:138

    CAS  Google Scholar 

  44. Vander Voort GF (1993) ASM handbook, vol 1, 10th edn. ASM Int, Metals Park, OH

    Google Scholar 

  45. Schulz BJ Jr, McMahon CJ (1972) ASTM STP 499. American Society for Testing and Materials, Philadelphia, pp 104–135

  46. Low JR (1968) Trans AIME 242:14

    CAS  Google Scholar 

  47. Horn RM, Ritchie RO (1978) Metall Trans A 9A:1039

    CAS  ADS  Google Scholar 

  48. Bhadeshia HKDH, Edmonds DV (1979) Met Sci 13:325

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Muhammad Saraf (Deputy Chief Manager) and Dr. Sajid Mirza (Senior Chief Manager) for their valuable suggestions and guidance and Mr. Raza Hussain (Chairman SUPARCO) for their approval and provision of facilities. Authors also like to acknowledge the technical assistance and meaningful discussions made by Mr. Badar-ul-Hassan (Technical Officer) throughout the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawad Tariq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tariq, F., Naz, N., Baloch, R.A. et al. Evolution of microstructure and mechanical properties during quenching and tempering of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel. J Mater Sci 45, 1695–1708 (2010). https://doi.org/10.1007/s10853-009-4160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4160-x

Keywords

Navigation