Skip to main content
Log in

Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ultrasound (US) assisted one pot method has used to synthesize CuO nanoparticles. The fourier transform infrared spectroscopy (FTIR) spectrum shows a characteristic peak of metal–oxygen bond at 535 cm−1, which confirms the CuO formation. The high resolution transmission electron microscope (HRTEM) images of the synthesized nano-CuO confirms the size of nanorods with the length of approximately 25–30 nm, and its breadth is less than one nanometer. X-ray diffraction (XRD) pattern of CuO can be readily assigned to those of crystalline CuO, indicating the formation of single-phase CuO with monoclinic structure. The synthesized nano-CuO is mixed with poly(vinyl alcohol) (PVA) to prepare the PVA/CuO nanocomposite to improve the thermal stability of PVA. Their physico-chemical properties are examined by means of FTIR, XRD, differential scanning calorimetry, thermogravimetric analysis, HRTEM, and scanning electron microscope (SEM) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241. doi:10.1038/nature01353

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Zhu HW, Xu CL, Wu DH, Ajayan PM (2002) Science 296:884. doi:10.1038/nature00767

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Xu Z, Qian Z, Hattori H (1991) Bull Chem Soc Jpn 64:1658

    Article  CAS  Google Scholar 

  4. Chen D, Shen G, Tang K, Qian Y (2003) J Cryst Growth 254:225. doi:10.1016/S0022-0248(03)01170

    Article  CAS  ADS  Google Scholar 

  5. Huk YD, Kweon SS (2005) Bull Korean Chem Soc 26:2054

    Article  Google Scholar 

  6. Wang WZ, Vargheese OK, Ruan C, Grimes CA (2003) J Mater Res 18:2756

    Article  CAS  ADS  Google Scholar 

  7. Hong ZS, Cao Y, Deng JF (2002) Mater Lett 52:34

    Article  CAS  Google Scholar 

  8. Liu Q, Liang Y, Liu H, Hong J, Xu Z (2006) Mater Chem Phys 98:519. doi:10.1016/j.matchemphys.2005.09.073

    Article  CAS  Google Scholar 

  9. Yu H, Yu J, Liu S, Mann S (2007) Chem Mater 19:4327. doi:10.1021/cm070386d

    Article  CAS  Google Scholar 

  10. Dianzeng J, Jianqun Y, Xi X (1998) Chin Sci Bull 43:571

    Article  Google Scholar 

  11. Zhou K, Wang R, Xu B, Li Y (2006) Nanotechnology 17:3939. doi:10.1088/0957-4484/17/15/055

    Article  CAS  ADS  Google Scholar 

  12. Volanti DP, Keyson D, Simoes AZ, Souza AG (2008) J Alloys Compd 459:537. doi:10.1016/jalloycom.2007.05.023

    Article  CAS  Google Scholar 

  13. Stankovic ZD, Krcobic S, Wregg AA (1999) J Appl Electrochem 29:81

    Article  CAS  Google Scholar 

  14. Li JY, Xiong S, Xi B, Qian YT (2009) Cryst Growth Des 9:4108. doi:10.1021/cg900346p

    Article  CAS  Google Scholar 

  15. Xu CH, Woo CH, Qshi S (2004) Superlattice Microstruct 36:31. doi:10.1016/j.spmi.2004.08.021

    Article  CAS  ADS  Google Scholar 

  16. Fan H, Yang L, Hua W, Xie S, Zou B (2004) Nanotechnology 15:37. doi:10.1088/0957-4484(04)61337-7

    Article  CAS  ADS  Google Scholar 

  17. Savoicka K, Karadge M, Prasad AK, Gouma PI (2004) Microsc Microanal 10:360. doi:10.1017/S1431927604886033

    Google Scholar 

  18. Dar MA, Ahsanulhaq Q, Kim KS, Shim HS (2009) Appl Surf Sci 255:6279. doi:10.1016/j.apsusc.2009.02.002

    Article  CAS  ADS  Google Scholar 

  19. Wu H, Lin D, Ran W (2006) Appl Phys Lett 89:133125-1. doi:10.1063/1.2355474

    ADS  Google Scholar 

  20. Zhang K, Rossi C, Yves J, Chang C (2007) Nanotechnology 18:275607-1. doi:10.1088/0957-4484/18/27/275607

    ADS  Google Scholar 

  21. Li W, Bin Z, Xian CL, Jun XW (2007) Sci China Ser B Chem 50:63. doi:10.1007/S11426-007-0016-x

    Article  MATH  CAS  Google Scholar 

  22. Du GH, van Tendeloo G (2004) Chem Phys Lett 393:64. doi:10.1016/j.cplett.2004.06.017

    Article  CAS  ADS  Google Scholar 

  23. Parveen MF, Umapathy S, Dhanalakshmi V, Anbarasan R (2009) Nano 4:147. doi:10.1142/S17932920009001654

    Article  CAS  Google Scholar 

  24. Wang W, Liu Z, Liu Y, Xu C, Zheng C, Wang G (2003) Appl Phys A 76:417. doi:10.10107/s00339-002-1514-5

    Article  CAS  ADS  Google Scholar 

  25. Abdelaziz M, Abdelrazek EM (2007) Physica B 390:1. doi:10.1016/jphysb.2006.07.067

    Article  CAS  ADS  Google Scholar 

  26. Yu YH, Lin CY, Yeh JM, Lin WH (2003) Polymer 44:2553. doi:10.1016/S0032-3861(03)00106-x

    Article  CAS  Google Scholar 

  27. Rachna M, Rao KJ (1999) Eur Polym J 35:1883

    Article  Google Scholar 

  28. Peng Z, Kong LX (2007) Polym Degrad Stab 92:207. doi:10.1016/j.polymdegradstab.2006.11.008

    Google Scholar 

  29. Gaffer SA, Abd El-Kader FH, Rizk MS (1994) Phys Scr 49:366

    Article  ADS  Google Scholar 

  30. Parveen MF, Umapathy S, Dhanalakshmi V, Anbarasan R (2009) J Mater Sci 44:5852. doi:10.1007/s10853-009-3826-8

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anbarasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, S., Subramani, R.H.H., Ramakrishnan, T. et al. Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol). J Mater Sci 45, 1688–1694 (2010). https://doi.org/10.1007/s10853-009-4158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4158-4

Keywords

Navigation