Skip to main content
Log in

Erosion–corrosion behavior of plastic mold steel in solid/aqueous slurry

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Erosion–corrosion behavior of a precipitation hardenable plastic mold steel (NAK80) has been investigated by using a rotated slurry erosion rig containing a slurry comprising 20 wt% Al2O3 particle and 3.5% NaCl solution. The erosion–corrosion rate and the synergism between erosion and corrosion have been determined under various conditions. The major environmental parameters considered are impact angle, impact velocity, and particle size. Post-test examination was conducted to identify the material degradation mechanism involved. The erosion–corrosion mechanisms of NAK80 mold steel at high-impact angles are dominated by the formation of impact pits, dissolution of metallic matrix, and plastic deformation fatigue spalling, whereas at low-impact angles, the mechanisms are dominated by the formation of impact pits, dissolution of metallic matrix, fatigue cracks, and cutting. The observed synergism between these mechanisms is much more accentuated at an oblique impact angle than that at a normal impact angle. At a given impact angle, the erosion–corrosion rate is found to increase with the impact velocity and the size of solid particles. The maximum peak of the erosion rates lies at oblique angles between 30° and 45°, whereas the maximum peak of the erosion–corrosion rates appears at 45°, and the erosion–corrosion rate is higher than the erosion rate alone at all angles examined. There is a positive synergism between erosion and corrosion for NAK80 mold steel in solid/aqueous slurry. The synergistic effect is 40–60% of the total weight loss. The contribution of synergism to the total weight loss depends upon the impact velocity; however, it is almost independent of the impact angle and particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. https://doi.org/www.daido.co.jp/english/products/tool/plasticmold.html. Accessed 15 June 2009

  2. Sheir LL, Jarman RA, Burstein GT (1994) Corrosion, corrosion control. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Zu JB, Hutchings IM, Burstein GT (1990) Wear 140:331

    Article  CAS  Google Scholar 

  4. Matsumura M, Oka Y, Hiura H, Yano M (1991) ISIJ Int 31:168

    Article  CAS  Google Scholar 

  5. Lopez D, Falleiros NA, Tschiptschin AP (2007) Wear 263:347

    Article  CAS  Google Scholar 

  6. Stack MM, Pungwiwat N (2004) Wear 256:565

    Article  CAS  Google Scholar 

  7. Li XY, Yan YG, Ma L, Xu ZM, Li JG (2004) Mater Sci Eng A 382:82

    Article  Google Scholar 

  8. Guo HX, Lu BT, Luo JL (2005) Electrochim Acta 51:315

    Article  CAS  Google Scholar 

  9. Guenbour A, Hajji MA, Jallouli EM, Bachir AB (2006) Appl Surf Sci 253:2362

    Article  CAS  Google Scholar 

  10. Meng H, Hu X, Neville A (2007) Wear 263:355

    Article  CAS  Google Scholar 

  11. Zheng YG, Yu H, Jiang SL, Yao ZM (2008) Wear 264:1051

    Article  CAS  Google Scholar 

  12. Zheng Y, Yao Z, Wei X, Ke W (1995) Wear 186–187:555

    Article  Google Scholar 

  13. Nesic S, Postlethwaite J, Olsen S (1995) Corrosion 4:131

    Google Scholar 

  14. Liu ZY, Dong CF, Li XG, Zhi Q, Cheng YF (2009) J Mater Sci 44:4228. doi:https://doi.org/10.1007/s10853-009-3520-x

    Article  CAS  Google Scholar 

  15. Niu L, Yin YH, Guo WK, Lu M, Qin R, Chen S (2009) J Mater Sci 44:4511. doi:https://doi.org/10.1007/s10853-009-3654-x

    Article  CAS  Google Scholar 

  16. Kermani MB, Morshed A (2003) Corrosion 59:659

    Article  CAS  Google Scholar 

  17. Chaudhary D, Liu HH (2009) J Mater Sci 44:4472. doi:https://doi.org/10.1007/s10853-009-3678-2

    Article  CAS  Google Scholar 

  18. Behpour M, Ghoreishi SM, Gandomi-Niasar A, Soltani N, Salavati-Niasari M (2009) J Mater Sci 44:2444. doi:https://doi.org/10.1007/s10853-009-3309-y

    Article  CAS  Google Scholar 

  19. Clark HM, Hartwich RB (2001) Wear 248:147

    Article  CAS  Google Scholar 

  20. Burstein GT, Sasaki K (2000) Wear 240:80

    Article  CAS  Google Scholar 

  21. Stack MM, Abd Ei Badia TM (2006) Surf Coat Technol 201:1335

    Article  CAS  Google Scholar 

  22. Lopez D, Congote JP, Cano JR, Toro A, Tschiptschin AP (2005) Wear 259:118

    Article  CAS  Google Scholar 

  23. Calliari I, Brunelli K, Zanellato M, Ramous E, Bertelli R (2009) J Mater Sci 44:3764. doi:https://doi.org/10.1007/s10853-009-3505-9

    Article  CAS  Google Scholar 

  24. Sasaki K, Burstein GT (1996) Corros Sci 38:2111

    Article  CAS  Google Scholar 

  25. Burstein GT, Davies DH (1980) Corros Sci 20:1143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Cherng Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, DC. Erosion–corrosion behavior of plastic mold steel in solid/aqueous slurry. J Mater Sci 44, 6363–6371 (2009). https://doi.org/10.1007/s10853-009-3877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3877-x

Keywords

Navigation