Skip to main content
Log in

Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Highly oriented PbZr0.53Ti0.47O3/CoFe2O4 (PZT/CFO) multilayered nanostructures (MLNs) were grown on MgO substrate by pulsed laser ablation using La0.5Sr0.5CoO3 (LSCO) as conducting bottom electrode. The effect of various PZT/CFO (PC) sandwich configurations having three, five, and nine layers while maintaining total thickness of PZT and CFO be identical has been systematically investigated. X-ray diffraction (XRD) and micro-Raman spectra revealed the existence of pure PZT and CFO phases without any intermediate phase. Intact MLNs were observed by transmission electron microscopy (TEM) with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase. Impedance spectroscopy, modulus spectroscopy, and conductivity spectroscopy were carry out over a wide range of temperatures (100–600 K) and frequencies (100 Hz–1 MHz) to investigate the grain and grain boundary effect on electrical properties of MLNs. Temperature dependent real dielectric permittivity and dielectric loss illustrated step-like behavior and relaxation peaks near the step-up characteristic, respectively. Cole–Cole plots indicate that most of the dielectric response came from the bulk (grain) MLNs below 300 K, whereas the grain boundary and the electrode–MLNs effects are prominent at elevated temperatures. The dielectric loss relaxation peak shifted to higher frequency side with increase in temperature, it was out of the experimental frequency window above 300 K. Our Cole–Cole fitting of dielectric loss spectra indicated marked deviation from the ideal Debye-type of relaxation, which is more at elevated temperature. Master modulus spectra supported the observation from the impedance spectra; it also indicated that the magnitude of the grain boundary compared to grain becomes more prominent with increase in number of layers. We have explained these electrical properties of MLNs by Maxwell–Wagner type contributions arising from the interfacial charge at the interface of the ML structures. Three different types of frequency dependent conduction processes were observed at elevated temperatures (>300 K), which fitted well with the double power law, \( \sigma \left( \omega \right) = \sigma \left( 0 \right) + A_{1} \omega^{{n_{1} }} + A_{2} \omega^{{n_{2} }} , \) indicating that the low frequency (<1 kHz) conductivity may be due to long-range ordering (frequency independent), mid frequency conductivity (<10 kHz) may be due to short-range hopping, and high frequency (<1 MHz) conduction due to the localized relaxation hopping mechanism. Ferroelectric polarization decreased slowly in reducing the temperature from 300 to 200 K, with complete collapse of polarization at ~100 K, but there was complete recovery of the polarization during heating, which was repeatable over many different experiments. At the same time, the temperature dependent remanent magnetization of the MLNs showed slow enhancement in the magnitude till 200 K with three-fold increase at 100 K compared to room temperature. This enhancement in remanent magnetization and decrease in remanent ferroelectric polarization on lowering the temperature indicate temperature dependent dynamic switching of ferroelectric polarization. The magnetic and ferroelectric properties of MLNs were quite different compared to individual layers suggesting its improper ferroelectric characteristics. The fatigue test showed almost 0–20% deterioration in polarization. Fatigue and strong temperature and frequency dependent magneto-electric coupling suggest MLNs utility for Dynamic Magneto-Electric Random Access Memory (DMERAM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scott JF (2007) Science 315:954

    Article  CAS  Google Scholar 

  2. Spaldin NA, Fiebig M (2005) Science 309:391

    Article  CAS  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759

    Article  CAS  Google Scholar 

  4. Spaldin NA, Pickett WE (2003) J Solid State Chem 176:615

    Article  CAS  Google Scholar 

  5. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299(14):1719

    Article  CAS  Google Scholar 

  6. Ramesh R, Spaldin NA (2007) Nature 6:21

    Article  CAS  Google Scholar 

  7. Zheng H, Wang J, Loand SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661

    Article  CAS  Google Scholar 

  8. Petrov VM, Srinivasan G, Laletsin U, Bichurin MI, Tuskov DS, Paddubnaya N (2007) Phys Rev B 75:174422

    Article  CAS  Google Scholar 

  9. Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Phys Rev B 64:214408

    Article  CAS  Google Scholar 

  10. Dong S, Li J-F, Viehland D (2006) J Mater Sci 41:97. doi:https://doi.org/10.1007/s10853-005-5930-8

    Article  CAS  Google Scholar 

  11. Zhang JX, Dai JY, Lu W, Chan WHL (2009) J Mater Sci. doi: https://doi.org/10.1007/s10853-009-3512-x

    Article  CAS  Google Scholar 

  12. Duan Ch-G, Jaswal SS, Tsymbal EY (2006) Phys Rev Lett 97:047201

    Article  CAS  Google Scholar 

  13. Niranjan M-K, Velev JP, Duan Ch-G, Jaswal SS, Tsymbal EY (2008) Phys Rev B 78:104405

    Article  CAS  Google Scholar 

  14. Zhou JP, He H, Shi Z, Nan CW (2006) Appl Phys Lett 88:013111

    Article  CAS  Google Scholar 

  15. Murugavel P, Singh MP, Prellier W, Mercey B, Simon Ch, Raveau B (2005) J Appl Phys 97:103914

    Article  CAS  Google Scholar 

  16. Ortega N, Bhattacharya P, Katiyar RS, Dutta P, Manivannan A, Seehra MS, Takeuchi I, Majumder SB (2006) J Appl Phys 100:126105

    Article  CAS  Google Scholar 

  17. Raymond O, Font R, Suarez-Almodovar N, Portelles J, Siqueiros JM (2005) J Appl Phys 97:084108

    Article  CAS  Google Scholar 

  18. Srinivas K, Sarah P, Suryanarayana SV (2003) Bull Mater Sci 26:2–274

    Article  Google Scholar 

  19. Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Phy Rev B 77:014111

    Article  CAS  Google Scholar 

  20. Liu J, Duan Ch-G, Mei WN, Smith RW, Hardy JR (2005) J Appl Phys 98:093703

    Article  CAS  Google Scholar 

  21. Ni WQ, Zheng XH, Yu JC (2007) J Mater Sci 42:1037. doi:https://doi.org/10.1007/s10853-006-1431-7

    Article  CAS  Google Scholar 

  22. Catalan G (2006) Appl Phys Lett 88:102902

    Article  CAS  Google Scholar 

  23. Catalan G, Scott JF (2007) Nature 448:E4. doi:https://doi.org/10.1038/nature06156

    Article  CAS  Google Scholar 

  24. Catalan G, O`Neill D, Bowman RM, Gregg JM (2000) Appl Phys Lett 77:3078

    Article  CAS  Google Scholar 

  25. Ortega N, Kumar A, Katiyar RS, Scott JF (2007) Appl Phys Lett 91:102902

    Article  CAS  Google Scholar 

  26. Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153

    Article  CAS  Google Scholar 

  27. Yang P, Carroll DL, Robert JB, Schwartz W (2002) Appl Phys Lett 81:4583

    Article  CAS  Google Scholar 

  28. Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P (2008) Nature 452:732

    Article  CAS  Google Scholar 

  29. Kundys B, Simon Ch, Martin Ch (2008) Phys Rev B 77:172402

    Article  CAS  Google Scholar 

  30. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  31. Schmidt R, Eerenstein W, Winiecki T, Morrison FD, Midgley PA (2007) Phys Rev B 75:245111

    Article  CAS  Google Scholar 

  32. Jiang AQ, Scott JF, Dawber M, Wang C (2002) J Appl Phys 92:6756

    Article  CAS  Google Scholar 

  33. Liu J, Duan Ch-G, Yin W-G, Mei WN, Smith RW, Hardy JR (2004) Phys Rev B 70:144106

    Article  CAS  Google Scholar 

  34. Victor P, Bhattacharyya S, Krupanidhy SB (2003) J Appl Phys 94:5135

    Article  CAS  Google Scholar 

  35. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  36. Provenzano V, Boesch LP, Volterra V, Macedo PB, Moynihan CT (1972) J Am Ceram Soc 55:492

    Article  CAS  Google Scholar 

  37. Kohlrausch R (1847) Ann Phys. (Leipzig) 12:393

    Google Scholar 

  38. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  39. Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122

    CAS  Google Scholar 

  40. Baskaran N (2002) J Appl Phys 92:825

    Article  CAS  Google Scholar 

  41. Patel HK, Martin SW (1992) Phys Rev B 45:10292

    Article  CAS  Google Scholar 

  42. Ngai KL, Greaves GN, Moynihan CT (1998) Phys Rev Lett 80:1018

    Article  CAS  Google Scholar 

  43. Funke K (1993) Prog Solid State Chem 22:111

    Article  CAS  Google Scholar 

  44. Jonscher AK (1977) Nature 264:673

    Article  Google Scholar 

  45. Murugaraj R (2007) J Mater Sci 42:10065. doi:https://doi.org/10.1007/s10853-007-2052-5

    Article  CAS  Google Scholar 

  46. Almond AP, West AR, Grant RJ (1982) Solid State Commun 44:277

    Article  Google Scholar 

  47. Pelaiz-Barramco A, Gutierrez-Amador MP, Huanosta A, Valenzuela R (1998) Appl Phys Lett 73:2039

    Article  Google Scholar 

  48. Calderon MJ, Brey L, Guinea F (1999) Phys Rev B 60:6698

    Article  CAS  Google Scholar 

  49. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Phys Rev B 67:180401 (R)

    Article  CAS  Google Scholar 

  50. Yang Y, Liu JM, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Phys Rev B 70:132101

    Article  CAS  Google Scholar 

  51. Al-Shareef HN, Kingon AI, Chen X, Bellur KR, Auciello O (1994) J Mater Res 9:2968

    Article  CAS  Google Scholar 

  52. Yoo IK, Desu SB (1992) Mater Sci Eng B 13:319

    Article  Google Scholar 

  53. Warren WL, Dimos D, Tuttle BA, Nasby RD, Pike GE (1994) Appl Phys Lett 65:1018

    Article  CAS  Google Scholar 

  54. Ramesh R, Chan WK, Wilkens B, Gilchrist H, Sands T, Tarascon JM, Keramidas VG, Fork DK, Lee J, Safari A (1992) Appl Phys Lett 61:1537

    Article  CAS  Google Scholar 

  55. Dat R, Lichtenwalner DJ, Auciello O, Kingon AI (1994) Appl Phys Lett 64:2673

    Article  CAS  Google Scholar 

  56. Bao D, Wakiya N, Shinozaki K, Mizutani N (2002) J Phys D Appl Phys 35:L1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by DOE DE-FG02- 08ER46526, DoD-HIS W911NF-06-1-0030 and DEPSCoR W911NF-06-1-0183 grants. One of us (N. Ortega) was supported by a NSF-IFN-EPSCOR Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram S. Katiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, N., Kumar, A., Katiyar, R.S. et al. Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J Mater Sci 44, 5127–5142 (2009). https://doi.org/10.1007/s10853-009-3635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3635-0

Keywords

Navigation