Skip to main content

Advertisement

Log in

Ab initio study of antiferroelectric PbZrO3 (001) surfaces

  • Ferroelectrics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have carried out first-principles total-energy calculations of bulk and (001) surfaces of PbZrO3. The ground state for bulk PbZrO3 is determined to be the antiferroelectric orthorhombic phase, with the ferroelectric rhombohedral and paraelectric cubic phases being 0.14 and 0.39 eV per formula unit higher in energy, respectively. PbO- and ZrO2-terminated (001) surfaces, either clean or when hydroxyl species were adsorbed were considered. Surface relaxations, in-plane antiferroelectric distortions and modifications to the electronic structure due to the surfaces, and hydroxyl adsorbates on the surfaces were investigated. We find that while clean surfaces retained bulk-like behavior, hydroxyl adsorbates induce significant changes to the surface geometry as well as introduce electronic states in the band gap possibly rendering the surfaces metallic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scott JF (2007) Science 315:954

    Article  CAS  Google Scholar 

  2. Watton R (1989) Ferroelectrics 91:87

    Article  CAS  Google Scholar 

  3. Whatmore RW (1991) Ferroelectrics 118:241

    Article  CAS  Google Scholar 

  4. Lines ME, Glass AM (1977) Principles and applications of ferroelectric and related materials. Clarendon, Oxford

    Google Scholar 

  5. Noguera C (1996) Physics and chemistry at oxide surfaces. Cambridge University Press, New York

    Book  Google Scholar 

  6. Jona F, Shirane G, Mazzi F, Pepinsky R (1957) Phys Rev 105:849

    Article  CAS  Google Scholar 

  7. Whatmore RW, Glazer AM (1979) J Phys C 12:1505

    Article  CAS  Google Scholar 

  8. Sawaguchi E, Shiozaki Y, Fujishita H, Tanaka M (1980) J Phys Soc Jpn 49(suppl B):191

    Google Scholar 

  9. Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E (1982) J Phys Soc Jpn 51:3583

    Article  CAS  Google Scholar 

  10. Tanaka M, Saito R, Tsuzuki K (1982) J Phys Soc Jpn 51:2635

    Article  CAS  Google Scholar 

  11. Fujishita H, Hoshino S (1984) J Phys Soc Jpn 53:226

    Article  CAS  Google Scholar 

  12. Fujishita H, Katano S (2000) Ferroelectrics 237:209

    Article  Google Scholar 

  13. Fujishita H, Tanaka S (2001) Ferroelectrics 258:37

    Article  CAS  Google Scholar 

  14. Fujishita H, Ishikawa Y, Tanaka S, Ogawaguchi A, Katano S (2003) J Phys Soc Jpn 72:1426

    Article  CAS  Google Scholar 

  15. Singh DJ (1995) Phys Rev B 52:12559

    Article  CAS  Google Scholar 

  16. Johannes MD, Singh DJ (2005) Phys Rev B 71:212101

    Article  Google Scholar 

  17. Robertson J (2000) J Vac Sci Technol B 18(3):1785

    Article  CAS  Google Scholar 

  18. Piskunov S, Gopeyenko A, Kotomin EA, Zhukovskii YuF, Ellis DE (2007) Comput Mater Sci 41:195

    Article  CAS  Google Scholar 

  19. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  20. Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188

    Article  Google Scholar 

  21. Aoyagi S, Kuroiwa Y, Sawada A, Tanaka H, Harada J, Nishibori E, Takata M, Sakata M (2002) J Phys Soc Jpn 71:2353

    Article  CAS  Google Scholar 

  22. Kagimura R, Singh DJ (2008) Phys Rev B 77:104113

    Article  Google Scholar 

  23. Baedi J, Hosseini SM, Kompany A, Attaran Kakhki E (2008) Phys Status Solidi (B) 245:2572

    Article  CAS  Google Scholar 

  24. Leung K, Wright AF (2002) Ferroelectrics 281:171

    Article  CAS  Google Scholar 

  25. Eglitis RI, Vanderbilt D (2007) Phys Rev B 76:155439

    Article  Google Scholar 

Download references

Acknowledgements

GP and RR would like to acknowledge financial support of this work by a grant from DARPA through a sub-contract from General Electric. Helpful discussions with Dr. Steve Boggs and Dr. Pamir Alpay are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramprasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilania, G., Tan, D.Q., Cao, Y. et al. Ab initio study of antiferroelectric PbZrO3 (001) surfaces. J Mater Sci 44, 5249–5255 (2009). https://doi.org/10.1007/s10853-009-3465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3465-0

Keywords

Navigation