Skip to main content
Log in

Study of microstructural evolution during static recrystallization in a low alloy steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hot compression tests of 42CrMo steel were carried out on Gleeble-1500 thermo-mechanical simulator. The effects of forming temperature, strain rate, deformation degree, and initial austenite grain size on the microstructural evolution during static recrystallization in hot deformed 42CrMo steel were discussed. Based on the experimental results, the grain size model for static recrystallization was established. It is found that the effects of the processing parameters on the microstructural evolution during static recrystallization are significant, while those of the initial austenitic grain size are not obvious. Additionally, a good agreement between the experimental and predicted grain sizes was also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hakamada M, Watazu A, Saito N, Iwasaki H (2008) J Mater Sci 43:2066. doi:https://doi.org/10.1007/s10853-008-2474-8

    Article  CAS  Google Scholar 

  2. Mandal S, Sivaprasad PV, Dube RK (2007) J Mater Eng Perform 16:672. doi:https://doi.org/10.1007/s11665-007-9098-z

    Article  CAS  Google Scholar 

  3. Dehghan-Manshadi A, Hodgson PD (2008) J Mater Sci 43:6272. doi:https://doi.org/10.1007/s10853-008-2907-4

    Article  CAS  Google Scholar 

  4. Fernández AI, Uranga P, López B, Rodriguez-ibabe JM (2000) ISIJ Int 40:893

    Article  Google Scholar 

  5. Poliak EI, Jonas JJ (2004) ISIJ Int 44:1874

    Article  CAS  Google Scholar 

  6. Elwazri AM, Essadiqi E, Yue S (2004) ISIJ Int 44:744

    Article  CAS  Google Scholar 

  7. Lin YC, Fang XL, Wang YP (2008) J Mater Sci 43:5508. doi:https://doi.org/10.1007/s10853-008-2832-6

    Article  CAS  Google Scholar 

  8. He XM, Yu ZQ, Liu GM, Wang WG, Lai XM (2009) Mater Des 30:166. doi:https://doi.org/10.1016/j.matdes.2008.04.046

    Article  CAS  Google Scholar 

  9. He XM, Yu ZQ, Lai XM (2008) Mater Lett 62:4181. doi:https://doi.org/10.1016/j.matlet.2008.05.071

    Article  CAS  Google Scholar 

  10. Lin YC, Chen MS, Zhong J (2008) Comput Mater Sci 42:470. doi:https://doi.org/10.1016/j.commatsci.2007.08.011

    Article  CAS  Google Scholar 

  11. Lin YC, Chen MS, Zhong J (2008) Comput Mater Sci 44:316. doi:https://doi.org/10.1016/j.commatsci.2008.03.027

    Article  CAS  Google Scholar 

  12. Morris DG, Gutierrez-Urrutia I, Muñoz-Morris MA (2007) J Mater Sci 42:1439. doi: https://doi.org/10.1007/s10853-006-0564-z

    Article  CAS  Google Scholar 

  13. Mandal S, Sivaprasad PV, Dube RK (2007) J Mater Sci 42:2724. doi:https://doi.org/10.1007/s10853-006-1275-1

    Article  CAS  Google Scholar 

  14. Xu LJ, Xing JD, Wei SZ, Peng T, Zhang YZ, Long R (2007) J Mater Sci 42:2565. doi: https://doi.org/10.1007/s10853-006-1278-y

    Article  CAS  Google Scholar 

  15. Kalaichelvi V, Sivakumar D, Karthikeyan R, Palanikumar K (2008) Mater Des. doi: https://doi.org/10.1016/j.matdes.2008.06.022

    Article  CAS  Google Scholar 

  16. Garcia-Mateo C, Capdevila C, Caballero FG, García de Andrés C (2007) J Mater Sci 42:5391. doi: https://doi.org/10.1007/s10853-006-0881-2

    Article  CAS  Google Scholar 

  17. Lins JFC, Sandim HRZ, Kestenbach HJ (2007) J Mater Sci 42:6572. doi:https://doi.org/10.1007/s10853-007-1515-z

    Article  CAS  Google Scholar 

  18. Maropoulos S, Karagiannis S, Ridley N (2007) J Mater Sci 42:1309. doi:https://doi.org/10.1007/s10853-006-1191-4

    Article  CAS  Google Scholar 

  19. Saha R, Ray RK (2008) J Mater Sci 43:207. doi: https://doi.org/10.1007/s10853-007-2139-z

    Article  CAS  Google Scholar 

  20. Karadeniz E (2008) Mater Des 29:251

    Article  CAS  Google Scholar 

  21. Lin YC, Chen MS, Zhong J (2008) Mech Res Commun 35:142. doi:https://doi.org/10.1016/j.mechrescom.2007.10.002

    Article  Google Scholar 

  22. Lin YC, Zhang J, Zhong J (2008) Comput Mater Sci 43:752. doi:https://doi.org/10.1016/j.commatsci.2008.01.039

    Article  CAS  Google Scholar 

  23. Phaniraj MP, Behera BB, Lahiri AK (2006) J Mater Process Technol 178:388

    Article  CAS  Google Scholar 

  24. Nakata N, Militzer M (2005) ISIJ Int 45:82

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by 973 Program (Grant No.2006CB705401), National Natural Science Foundation of China (No. 50805147), China Postdoctoral Science Foundation (Grant No.20070410302), and the Postdoctoral Science Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y.C., Chen, MS. Study of microstructural evolution during static recrystallization in a low alloy steel. J Mater Sci 44, 835–842 (2009). https://doi.org/10.1007/s10853-008-3120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3120-1

Keywords

Navigation