Skip to main content
Log in

Hybrid organic–inorganic materials based on polypyrrole and 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) containing dianions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The synthesis of hybrid materials by electropolymerization of pyrrole and inorganic complexes based on the DMIT ligand (1,3-dithiole-2-thione-4,5-dithiolate), e.g. [NEt4]2[M(DMIT)n] (M = Ni, Pd or Pd, n = 2; M = Sn, n = 3], in acetonitrile solution is reported. Spectroscopic data showed that DMIT-containing anions, [M(DMIT)n]2−, were inserted into the polypyrrole framework without chemical modification during the electropolymerization process. Cyclic voltammetry showed that materials obtained were electroactive, undergoing redox processes related to both the conducting polymer and the counteranions. The electrochemical results also suggest that, in the case of the transition metal containing films, the counteranions are not trapped in the PPy matrix but undergo anion exchange during the redox cycle of PPy. However, an opposite behaviour was observed with the film with [M(DMIT)n]2−. The films exhibit good thermal stabilities and have conductivity values expected for semiconductors. This study of these hybrid materials highlights the importance of targeting specific materials for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The acronym ‘DMIT’ stems from the name dimercaptoisotrithione, an older nomenclature system for sulphur-based heterocycles.

References

  1. Malinauskas A, Malinauskien J, Ramanavičius A (2005) Nanotechnology 16:R51. doi:https://doi.org/10.1088/0957-4484/16/10/R01

    Article  CAS  Google Scholar 

  2. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Anal Chim Acta 61:41

    Google Scholar 

  3. Yamamoto K, Yamada M, Nishiumi T (2000) Polym Adv Technol 11:710. doi :10.1002/1099-1581(200008/12)11:8/12<710::AID-PAT24>3.0.CO;2-K

    Article  CAS  Google Scholar 

  4. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403. doi:https://doi.org/10.1016/S0013-4686(00)00329-7

    Article  CAS  Google Scholar 

  5. Malinauskas A (2001) Polymer Guildf 42(9):3957. doi:https://doi.org/10.1016/S0032-3861(00)00800-4

    Article  CAS  Google Scholar 

  6. Deslouis C, Duprat M, Tournillon C (1989) Corros Sci 29:13. doi:https://doi.org/10.1016/0010-938X(89)90077-2

    Article  CAS  Google Scholar 

  7. Ferreira CA, Lacaze JC (2001) J Electrochem Soc 148(4):121. doi:https://doi.org/10.1149/1.1354613

    Article  Google Scholar 

  8. Kesting RE, Fritzsche AK (eds) (1993) Polymeric gas separation membranes. John Wiley & Sons, Inc., New York, USA

  9. Guimard NK, Gomez N, Schmidt CE (2007) Prog Polym Sci 32:876. doi:https://doi.org/10.1016/j.progpolymsci.2007.05.012

    Article  CAS  Google Scholar 

  10. Otero TF (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, Chapter 10, vol 4. Wiley, Chichester, UK

  11. Carter FL (ed) (1982) Molecular electronic devices. Marcel Dekker, New York.

  12. Lubentsov BZ, Zvereva GI, Samovarov YH, Bystriak SM, Timofeeva ON, Khidekel MI (1991) Synth Met 41:1143; Krieger YG (1993) J Struct Chem 34:896

  13. (a) Otero TF, Villanueva S, Cortes MT, Cheng SA, Vazquez A, Boyano I (2001) Synth Met 119:419. doi:https://doi.org/10.1016/S0379-6779(00)01273-X; (b) Saito Y, Azechi T, Kitamura T, Hasegawa Y, Wada Y, Yanagida S (2004) Coord Chem Rev 248:1469. doi:https://doi.org/10.1016/j.ccr.2004.03.025

  14. Rowley NM, Mortimer RJ (2002) Sci Prog 85(3):243

    Article  CAS  Google Scholar 

  15. Wang F, Wilson MS, Rauh RD, Schottland P, Thompson BC, Reynolds JR (2000) Macromolecules 33:2083. doi:https://doi.org/10.1021/ma9918506

    Article  CAS  Google Scholar 

  16. Luna AMC (2000) J Appl Electrochem 30:1137. doi:https://doi.org/10.1023/A:1004050922065

    Article  CAS  Google Scholar 

  17. Bouzek K, Mangold K-M, Jüttner K (2000) Electrochim Acta 46:661. doi:https://doi.org/10.1016/S0013-4686(00)00659-9

    Article  CAS  Google Scholar 

  18. Bargon J, Baumann R (1993) Microelectronic Eng 20:55. doi:https://doi.org/10.1016/0167-9317(93)90207-L

    Article  CAS  Google Scholar 

  19. Ryder KS, Morris DG, Cooper JM (1997) Biosens Bioelectron 8:721. doi:https://doi.org/10.1016/S0956-5663(97)00039-0

    Article  Google Scholar 

  20. Frommer JE, Chance RR (eds) (1986) Electrically conducting polymers. Encyclopaedia Polym Sci Eng 5:462

  21. Saunders BR, Murray KS, Fleming RJ (1992) Synth Met 47:167. doi:https://doi.org/10.1016/0379-6779(92)90384-U

    Article  CAS  Google Scholar 

  22. Wang G, Chen H, Zhang H, Shen Y, Yuan C, Lu Z et al (1998) Phys Lett A 237:165. doi:https://doi.org/10.1016/S0375-9601(97)00837-2

    Article  CAS  Google Scholar 

  23. Saunders BR, Murray KS, Fleming RJ, Korbatieh Y (1993) Chem Mater 5:809. doi:https://doi.org/10.1021/cm00030a016

    Article  CAS  Google Scholar 

  24. Saunders BR, Murray KS, Fleming RJ, McCulloch DG (1995) Synth Met 69:363. doi:https://doi.org/10.1016/0379-6779(94)02487-J

    Article  CAS  Google Scholar 

  25. Pullen AE, Olk R-M (1999) Coord Chem Rev 188:211. doi:https://doi.org/10.1016/S0010-8545(99)00031-4

    Article  CAS  Google Scholar 

  26. da Cruz AGB, Wardell JL, Simão RA, Rocco AM (2006) Electrochim Acta 52:1899. doi:https://doi.org/10.1016/j.electacta.2006.07.061

    Article  Google Scholar 

  27. da Cruz AGB, Wardell JL, Simão RA, Rocco AM, Rangel MVD (2007) Synth Met 157:80. doi:https://doi.org/10.1016/j.synthmet.2006.12.010

    Article  Google Scholar 

  28. Pereira RP, Wardell JL, Rocco AM (2005) Synth Met 150:21. doi:https://doi.org/10.1016/j.synthmet.2004.12.020

    Article  CAS  Google Scholar 

  29. da Cruz AGB, Wardell JL, Rocco AM (2006) Synth Met 156:396. doi:https://doi.org/10.1016/j.synthmet.2005.12.026

    Article  Google Scholar 

  30. Steimecke G, Sieler H-J, Kirmse R, Hoyer E (1979) Phosporous Sulfur 7:49. doi:https://doi.org/10.1080/03086647808069922

    CAS  Google Scholar 

  31. Yu L, Zhu D (1996) Phosporous Sulfur 116:225. doi:https://doi.org/10.1080/10426509608040483

    Article  Google Scholar 

  32. Malfant I, Cordente N, Lacroix PG, Lepetit C (1998) Chem Mater 10:4079. doi:https://doi.org/10.1021/cm980487z

    Article  CAS  Google Scholar 

  33. Cassoux P, Valade L, Kobayashi H, Clark RA, Underhill AE (1991) Coord Chem Rev 110:115. doi:https://doi.org/10.1016/0010-8545(91)80024-8

    Article  CAS  Google Scholar 

  34. Bates JR, Milesa RW, Kathirgamanathan P (1996) Synth Met 76:313. doi:https://doi.org/10.1016/0379-6779(95)03479-4

    Article  CAS  Google Scholar 

  35. Bates JR, Kathirgamanathan P, Miles RW (1997) Thin Solid Films 299:18. doi:https://doi.org/10.1016/S0040-6090(96)09172-9

    Article  CAS  Google Scholar 

  36. Abruña HD (1988) Coord Chem Rev 86:135. doi:https://doi.org/10.1016/0010-8545(88)85013-6

    Article  Google Scholar 

  37. Abrantes LM, Correia JP (1999) Electrochim Acta 44:1901. doi:https://doi.org/10.1016/S0013-4686(98)00299-0

    Article  CAS  Google Scholar 

  38. Nalwa HS (ed) (1997) Handbook of conductive polymers: spectroscopy and physical properties, Chapter 12, vol 3. Wiley, Chichester, UK

  39. Simon A, Ricco AJ, Wrighton MS (1982) J Am Chem Soc 104:2031. doi:https://doi.org/10.1021/ja00371a045

    Article  CAS  Google Scholar 

  40. Collard DM, Sayre CN (1997) Synth Met 84:329. doi:https://doi.org/10.1016/S0379-6779(97)80768-0

    Article  CAS  Google Scholar 

  41. Takakubo M (1987) Synth Met 16:167. doi:https://doi.org/10.1016/0379-6779(86)90109-8

    Article  Google Scholar 

  42. Rocco AM, Pereira RP, Bonapace JAP, Comerlato NM, Wardell JL, Milne BF et al (2004) Inorg Chim Acta 357:1047. doi:https://doi.org/10.1016/j.ica.2003.09.026

    Article  CAS  Google Scholar 

  43. Liu G, Fang Q, Xu W, Chen H, Wang C (2004) Spectrochim Acta A: Mol Biomol Spectrosc 60:541. doi:https://doi.org/10.1016/S1386-1425(03)00260-9

    Article  Google Scholar 

  44. Valade L, Legros J-P, Cassoux P (1986) Mol Cryst Liq Cryst (Phila Pa; 2003) 140:335. doi:https://doi.org/10.1080/00268948608080163

    Article  CAS  Google Scholar 

  45. Pullen AE, Abboud KA, Reynolds JR (1996) Phys Rev B 53:10557. doi:https://doi.org/10.1103/PhysRevB.53.10557

    Article  Google Scholar 

  46. Jang J, Yoon H (2003) Chem Commun (Camb) 720. doi:https://doi.org/10.1039/b211716a

  47. Cervini R, Fleming RJ, Murray KS (1992) J Mater Chem 2:1115. doi:https://doi.org/10.1039/jm9920201115

    Article  CAS  Google Scholar 

  48. Han J, Lee S, Paik W (1992) Bull Korean Chem Soc 13

  49. Shilabin AG, Entezami AA (2000) Eur Polym J 36:2005. doi:https://doi.org/10.1016/S0014-3057(99)00262-1

    Article  CAS  Google Scholar 

  50. Li F, Albery WJ (1991) J Chem Soc, Faraday Trans 87:2949. doi:https://doi.org/10.1039/ft9918702949

    Article  CAS  Google Scholar 

  51. Cheung KM, Bloor D, Stevens GC (1990) J Mater Sci 25:3814. doi:https://doi.org/10.1007/BF00582447

    Article  CAS  Google Scholar 

  52. Dong S, Lian G (1990) J Electroanal Chem 291:23. doi:https://doi.org/10.1016/0022-0728(90)87174-I

    Article  CAS  Google Scholar 

  53. Varela H, Bruno RL, Torresi RM (2003) Polymer (Guildf) 44:5369. doi:https://doi.org/10.1016/S0032-3861(03)00526-3

    Article  CAS  Google Scholar 

  54. McCormac T, Breens W, McGree A, Cassidy JF, Lyons MEG (1995) Electroanalysis 287

    Article  CAS  Google Scholar 

  55. Lyons MEG, Breens W, Cassidy JF (1991) J Chem Soc, Faraday Trans 87:115. doi:https://doi.org/10.1039/ft9918700115

    Article  CAS  Google Scholar 

  56. McCormac T, Farrell D (2001) Electrochim Acta 46:3287. doi:https://doi.org/10.1016/S0013-4686(01)00621-1

    Article  CAS  Google Scholar 

  57. Cheng S, Otero TF, Coronado E, Garcia CJG, Ferrero EM, Saiz CG (2002) J Phys Chem B 106:7585. doi:https://doi.org/10.1021/jp014340y

    Article  CAS  Google Scholar 

  58. Bobacka J, Ivaska A, Grzeszczuk M (1991) Synth Met 44:9. doi:https://doi.org/10.1016/0379-6779(91)91853-3

    Article  CAS  Google Scholar 

  59. Cervini R, Fleming RJ, Kennedy BJ, Murray KS (1994) J Mater Chem 4:87. doi:https://doi.org/10.1039/jm9940400087

    Article  CAS  Google Scholar 

  60. Uyar T, Toppare L, Hacaloglu J (2002) J Anal Appl Pyrolysis 64:1. doi:https://doi.org/10.1016/S0165-2370(01)00166-8

    Article  CAS  Google Scholar 

  61. da Cruz AGB, Wardell JL, Rocco AM (2006) Thermochim Acta 443:190

    Google Scholar 

  62. Smits FM (1958) Bell Syst Tech J 37:711

    Article  Google Scholar 

  63. Uhlir A Jr (1955) Bell Syst Tech J 34:105

    Article  Google Scholar 

  64. Zimney EJ, Dommett GHB, Ruoff RS, Dikin DK (2007) Meas Sci Technol 18:2067. doi:https://doi.org/10.1088/0957-0233/18/7/037

    Article  CAS  Google Scholar 

  65. Girotto EM, Santos IA (2002) Quim Nova 25:639. doi:https://doi.org/10.1590/S0100-40422002000400019

    Article  CAS  Google Scholar 

  66. Wernet W, Wegner G (1987) Makromol Chem 188:1465. doi:https://doi.org/10.1002/macp.1987.021880621

    Article  CAS  Google Scholar 

  67. Yamaura M, Hagiwara T, Iwata K (1988) Synth Met 26:209. doi:https://doi.org/10.1016/0379-6779(88)90238-X

    Article  CAS  Google Scholar 

  68. Comerlato NM, Costa LAS, Howie RA, Pereira RP, Rocco AM, Silvino AC et al (2001) Polyhedron 20:415. doi:https://doi.org/10.1016/S0277-5387(00)00643-4

    Article  CAS  Google Scholar 

  69. Fereira GB, Comerlato NM, Wardell JL, Hollauer E (2005) Spectrochim Acta A: Mol Biomol Spectrosc 61:2663

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Capes and CNPq for fellowships, N. M. Comerlato and G. B. Ferreira for supplying the [NEt4]2[Zn(DMIT)2] complex and FAPERJ (Proc. No. E-26/170.700/2004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Gerson Bernardo da Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cruz, A.G.B., Wardell, J.L. & Rocco, A.M. Hybrid organic–inorganic materials based on polypyrrole and 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) containing dianions. J Mater Sci 43, 5823–5836 (2008). https://doi.org/10.1007/s10853-008-2877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2877-6

Keywords

Navigation