Skip to main content
Log in

Stiffness and energy dissipation in polyurethane auxetic foams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Auxetic open cell polyurethane (PU) foams have been manufactured and mechanically characterised under cyclic tensile loading. The classical manufacturing process for auxetic PU foams involves multiaxial compression of the conventional parent foam, and heating of the compressed specimens above the Tm of the foam polymer. Eighty cylindrical specimens were fabricated using manufacturing routes modified from those in the open literature, with different temperatures (135 °C, 150 °C), compression ratios and different cooling methods (water or room temperature exposure). Compressive tensile cyclic loading has been applied to measure tangent modulus, Poisson’s ratios and energy dissipated per unit volume. The results are used to obtain relations between manufacturing parameters, mechanical and hysteresis properties of the foams. Compression, both radial and axial, was found to be the most significant manufacturing parameter for the auxetic foams in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lakes RS (1987) Science 235:1038. doi:https://doi.org/10.1126/science.235.4792.1038

    Article  CAS  Google Scholar 

  2. Lakes RS (1987) Science 238:551. doi:https://doi.org/10.1126/science.238.4826.551-a

    Article  CAS  Google Scholar 

  3. Evans KE, Nkansah MA, Hutchinson IJ (1991) Nature 353:124. doi:https://doi.org/10.1038/353124a0

    Article  CAS  Google Scholar 

  4. Herakovich CT (1984) J Compos Mater 18(5):447. doi:https://doi.org/10.1177/002199838401800504

    Article  Google Scholar 

  5. Clarke JF, Duckett RA, Hine PJ, Hutchinson IJ, Ward IM (1994) Composites 25(9):863. doi:https://doi.org/10.1016/0010-4361(94)90027-2

    Article  Google Scholar 

  6. Evans KE, Donoghue JP, Alderson KL (2004) J Compos Mater 38(2):95. doi:https://doi.org/10.1177/0021998304038645

    Article  CAS  Google Scholar 

  7. Evans KE, Alderson KL (1992) J Mater Sci Lett 11(24):573. doi:https://doi.org/10.1007/BF00736221

    Article  Google Scholar 

  8. Alderson KL, Fitzgerald A, Evans KE (2000) J Mater Sci 35(16):1573. doi:https://doi.org/10.1023/A:1004830103411

    Article  Google Scholar 

  9. Abdel-Sayed FK, Jones R, Burgens IW (1979) Composites 10:279

    Google Scholar 

  10. Masters IG, Evans KE (1996) Compos Struct 35:403. doi:https://doi.org/10.1016/S0263-8223(96)00054-2

    Article  Google Scholar 

  11. Scarpa F, Panayiotou P, Tomlinson G (2000) J Strain Anal 35(5):383. doi:https://doi.org/10.1243/0309324001514152

    Article  Google Scholar 

  12. Prall D, Lakes R (1996) Int J Mech Sci 39(3):305. doi:https://doi.org/10.1016/S0020-7403(96)00025-2

    Article  Google Scholar 

  13. Scarpa F, Blain S, Lew T, Perrott D, Ruzzene M, Yates JR (2007) Compos A Appl Sci Manuf 38(2):280. doi:https://doi.org/10.1016/j.compositesa.2006.04.007

    Article  Google Scholar 

  14. Friis EA, Lakes RS, Park JB (1988) J Mater Sci 23:4406. doi:https://doi.org/10.1007/BF00551939

    Article  CAS  Google Scholar 

  15. Lakes RS, Elms K (1993) J Compos Mater 27:1193. doi:https://doi.org/10.1177/002199839302701203

    Article  Google Scholar 

  16. Chen CP, Lakes RS (1989) Cell Polym 8(5):343

    CAS  Google Scholar 

  17. Lakes RS (1992) Cell Polym 11:466

    Google Scholar 

  18. Howell B, Prendergast P, Hansen L (1994) Appl Acoust 43(2):141. doi:https://doi.org/10.1016/0003-682X(94)90057-4

    Article  Google Scholar 

  19. Scarpa F, Ciffo LG, Yates JR (2004) Smart Mater Struct 13(1):49. doi:https://doi.org/10.1088/0964-1726/13/1/006

    Article  CAS  Google Scholar 

  20. Chan N, Evans KE (1997) J Mater Sci 32(22):5945. doi:https://doi.org/10.1023/A:1018606926094

    Article  CAS  Google Scholar 

  21. Gaspar N, Smith CW, Miller EA, Seidler GT, Evans KE (2005) Phys Status Solidi B 242(3):550. doi:https://doi.org/10.1002/pssb.200460375

    Article  CAS  Google Scholar 

  22. Scarpa F, Pastorino P, Garelli A, Patsias S, Ruzzene M (2005) Phys Status Solidi B 242(3):681. doi:https://doi.org/10.1002/pssb.200460386

    Article  CAS  Google Scholar 

  23. Scarpa F, Yates JR, Ciffo LG (2002) Proc Inst Mech Eng C J Mech Sci 216(12):1153

    Article  Google Scholar 

  24. Bezazi A, Scarpa F (2007) Int J Fatigue 29(7):922. doi:https://doi.org/10.1016/j.ijfatigue.2006.07.015

    Article  CAS  Google Scholar 

  25. Lakes RS (1998) Viscoelastic solids. CRC Press, Boca Raton, FL

    Google Scholar 

  26. Smith CW, Wootton RJ, Evans KE (1999) Exp Mech 39(4):356. doi:https://doi.org/10.1007/BF02329817

    Article  Google Scholar 

  27. Taylor JR (1997) An introduction to error analysis, 2nd edn. University Science Books, Sausolito, pp 166–168

    Google Scholar 

  28. Smith CW, Lehman F, Wootton RJ, Evans KE (1999) Cell Polym 18(2):79

    CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to express their gratitude to the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher W. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, M., Scarpa, F.L. & Smith, C.W. Stiffness and energy dissipation in polyurethane auxetic foams. J Mater Sci 43, 5851–5860 (2008). https://doi.org/10.1007/s10853-008-2841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2841-5

Keywords

Navigation