Skip to main content
Log in

Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO2 matrix

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ge nanocrystallites (Ge-nc) have been formed by ion implantation of Ge+74 into SiO2 matrix, thermally grown on p-type Si substrates. The Ge-nc are examined by Raman spectroscopy, photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The samples were prepared with various implantation doses [0.5; 0.8; 1; 2; 3; 4] × 1016 cm−2 with 250 keV energy. After implantation, the samples were annealed at 1,000 °C in forming gas atmosphere for 1 h. Raman intensity variation with implantation doses is observed, particularly for the peak near 304 cm−1. It was found that the sample implanted with a doses of 2 × 1016 cm−2 shows maximum photoluminescence intensity at about 3.2 eV. FTIR analysis shows that the SiO2 film moved off stoichiometry due to Ge+74 ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeOx at exactly the doses corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm−1. This intensity reduction can be attributed to a larger portion of broken Ge–O bonds enabling a greater number of Ge atoms to participate in the cluster formation and at the same time increasing the oxygen vacancies. This idea would explain why the FTIR peak decreases at the same implantation doses where the PL intensity increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giri PK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2005) Solid State Commun 133:229

    Article  CAS  Google Scholar 

  2. Rebohle L, Von Borany J, Yankov RA, Skorupa W, Tyschenko IE, Frob H, Leo K (1997) Appl Phys Lett 71:2809

    Article  CAS  Google Scholar 

  3. Choi WK, China WK, Heng CL, Teo LW, Ho V, Ng V, Antoniadis DA, Fitzgerald EA (2002) Appl Phys Lett 80:2014

    Article  CAS  Google Scholar 

  4. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Nature 408:440

    Article  CAS  Google Scholar 

  5. Bostedt C, Van Burren T, Willey TM, Franco N, Terminello LJ, Heske C, Moller T (2004) Appl Phys Lett 84:4056

    Article  CAS  Google Scholar 

  6. Yoshida T, Takeyama S, Yamada Y, Mutoh K (1996) Appl Phys Part 1 35:94

    Article  Google Scholar 

  7. Marins ES, Mestanza SNM, Doi I (2006) Mater Sci Semiconduct Process 9:828

    Article  CAS  Google Scholar 

  8. Giri PK, Kesavamoorthy R, Panigrahi BK, Nair KGM (2006) Nucl Instr Meth Phys Res B 244:56

    Article  CAS  Google Scholar 

  9. Hayashi S, Fujii M, Yamamoto K (1989) Jpn J Appl Phys 28 part I:1464

    Article  Google Scholar 

  10. Zhu JG, White CW, Budai JD, Withrow SP, Chen Y (1995) J Appl Phys 78:4386

    Article  CAS  Google Scholar 

  11. Wu XL, Gao T, Yan F, Jiang SS, Feng D (1997) J Appl Phys 82:2704

    Article  CAS  Google Scholar 

  12. Kolobov AV (2000) J Appl Phys 87:2926

    Article  CAS  Google Scholar 

  13. Wellner A, Paillard V, Bonafos C, Coffin H, Claverie A, Schmidt B, Heining KH (2003) J Appl Phys 94:5639

    Article  CAS  Google Scholar 

  14. Fujii M, Hayashi S, Yamamoto K (1990) Appl Phys Lett 57:2692

    Article  CAS  Google Scholar 

  15. Lee WS, Jeong JY, Kim HB, Chae KH, Whang CN, Im S, Song JH (2000) Mater Sci Eng B 69–70:474

    Article  Google Scholar 

  16. Gallagher M, Österberg U (1993) Appl Phys Lett 63:2987

    Article  CAS  Google Scholar 

  17. Zhang JY, Wu XL, Bao XM (1997) Appl Phys Lett 71:2505

    Article  CAS  Google Scholar 

  18. Wu XL, Gao T, Siu GG, Tong S, Bao XM (1999) Appl Phys Lett 74:2420

    Article  CAS  Google Scholar 

  19. Skorupa W, Rebolhe L, Gebel T (2003) Appl Phys A 76:1049

    Article  CAS  Google Scholar 

  20. Zhang JY, Bao XM, Ye YH (1998) Thin Solid Films 323:68

    Article  CAS  Google Scholar 

  21. Pai PG, Chao SS, Takagi Y, Lucovsky G (1986) J Vac Sci Technol A 4:689

    Article  CAS  Google Scholar 

  22. Zacharias M, Blasing J (1995) Phys Rev B 52:14018

    Article  CAS  Google Scholar 

  23. Alayo MI, Pereyra I, Scopel WL, Fantini MCA (2002) Thin Solid Films 402:154

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Dr M. Behar of IF/UFRGS for his help with ion implantation, Dr J. M. J. Lopez for his help with the PL measurements and Dr E. Granado and A. Garcia, IFGW/UNICAMP, for the Raman spectroscopy measurements. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. M. Mestanza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestanza, S.N.M., Doi, I., Swart, J.W. et al. Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO2 matrix. J Mater Sci 42, 7757–7761 (2007). https://doi.org/10.1007/s10853-007-1628-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1628-4

Keywords

Navigation