Skip to main content
Log in

Preparation of lanthanum-doped TiO2 photocatalysts by coprecipitation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The lanthanum-doped TiO2 (La3+-TiO2) photocatalysts were prepared by coprecipitation and sol–gel methods. Rhodamine B was used as a model chemical in this work to evaluate the photocatalytic activity of the catalyst samples. The optimum catalyst samples were characterized by XRD, N2 adsorption–desorption measurement, SEM and electron probe microanalyses to find their differences in physical and chemical properties. The experimental results showed that the La3+-TiO2 catalysts prepared by coprecipitation exhibited obviously higher photocatalytic activities as compared with that prepared by the conventional sol–gel process. The optimum photocatalysts prepared by the coprecipitation and sol–gel process have similar adsorption equilibrium constants in Rhodamine B solution and particle size distribution in water medium although there are larger differences in their surface area, morphology and pore size distribution. The pores in the sol-gel prepared catalysts are in the range of mesopores (2–50 nm), whereas the pores in the coprecipitation prepared catalysts consist of bigger mesopores and macropores (>50 nm). The morphology of the primary particles and agglomerates of the La3+-TiO2 catalyst powders was affected by doping processes. The inhibition effect of lanthanum doping on the phase transformation is greater in the coprecipitation process than in the sol–gel process, which could be related with the different amount of Ti–O–La bonds in the precursors. This finding could be used for preparing the anatase La3+-TiO2 catalysts with more regular crystal structure through a higher heat treatment temperature. The optimum amount of lanthanum doping is ca. 1.0 wt.% and the surface atomic ratio of [O]/[Ti] is ca. 2.49 for 1.0 wt.% La3+-TiO2 catalysts prepared by the two processes. The obviously higher photocatalytic activity of the La3+-TiO2 samples prepared by the coprecipitation could be mainly attributed to their more regular anatase structure and more proper surface chemical state of Ti3+ species. The optimum preparation conditions are 1.0 wt.% doping amount of lanthanum ions, calcination temperature 800 °C and calcination time 2 h using the coprecipitation process. As compared with the sol-gel process, the coprecipitation process used relatively cheap inorganic raw materials and a simple process without organic solvents. Therefore, the coprecipitation method provides a potential alternative in realizing large scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Noorjahan M, Durga KV, Subrahmanyam M, Boule P (2004) Appl Catal B: Environ 3:209

    Article  Google Scholar 

  2. Lee JH, Kang M, Choung SJ (2004) Water Res 3:713

    Article  Google Scholar 

  3. Ohno S, Sato D, Kon M (2003) Thin Solid Films 2:207

    Article  Google Scholar 

  4. Kawahara T, Ozawa T, Iwasaki M, Tada H (2003) J Colloid Interface Sci 2:377

    Article  Google Scholar 

  5. Kwon CH, Kim JH, Jung IS, Shin H (2003) Ceramics Int 8:851

    Article  Google Scholar 

  6. Kominami H, Kumamoto H, Kera Y (2003) J Photochem Photobiol A: Chem 1/2:99

    Article  Google Scholar 

  7. Nakashima T, Ohko Y, Kubota Y, Fujishima A (2003) J Photochem Photobiol A: Chem 1/2:115

    Article  Google Scholar 

  8. Villacres R, Ikeda S, Torimoto T, Ohtani B (2003) J Photochem Photobiol A: Chem 1/2:121

    Article  Google Scholar 

  9. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A: Gen. 2:383

    Article  Google Scholar 

  10. Watson S, Beydoun D, Amal R (2002) J Photochem Photobiol A: Chem 1–3:303

    Article  Google Scholar 

  11. Yin S, Li RX, He QL, Sato T (2002) Mater Chem Phys 1–3:76

    Article  Google Scholar 

  12. Jung KY, Park SB, Ihm SK (2002) Appl Catal A: Gen 1/2:229

    Article  Google Scholar 

  13. Jin S, Shiraishi F (2004) Chem Eng J 2/3:203

    Article  Google Scholar 

  14. Di P, Agatino GL, Elisa MG (2004) Appl Catal B: Environ 3:223

    Google Scholar 

  15. Yamashita H, Harada M, Misaka J (2003) Catal Today 3/4:191

    Article  Google Scholar 

  16. Sugiyama K, Ogawa T, Saito N (2003) Surf Coat Technol 174–175:882

    Article  Google Scholar 

  17. Takeuchi M, Onozaki Y, Matsumura Y (2003) Nucl Instrum Methods Phys Res Section B. 206:259

    Article  CAS  Google Scholar 

  18. Rampaul A, Parkin IP, O’Neill SA, Souza JD, Mills A (2003) Polyhedron 1:35

    Article  Google Scholar 

  19. Yan PF, Zhou DR, Wang JQ (2002) Chem J Chinese U 12:2317 (in Chinese)

    Google Scholar 

  20. Liu HY, Gao L (2004) J Am Ceramic Soc 8:1582

    Article  Google Scholar 

  21. Wu SX, Ma Z, Qin YN (2004) Acta Phys Chim Sin 2:138

    Google Scholar 

  22. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B: Environ 4:403

    Article  Google Scholar 

  23. Dana D, Vlasta B, Milan M, Malati MA (2002) Appl Catal B: Environ 2:91

    Google Scholar 

  24. Di PA, Garcıa LE, Ikeda S (2002) Catal Today 1–4:87

    Google Scholar 

  25. Hu C, Tang YC, Tang HX (2004) Catal Today 3/4:325

    Google Scholar 

  26. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) Environ Sci Technol 7:1544

    Article  Google Scholar 

  27. Ranjit KT, Cohen H, Willner I, Bossmann S, Braun AM (1999) J Mater Sci 34:5273

    Article  CAS  Google Scholar 

  28. Ranjit KT, Willner I, Bossmann SH, Braun AM (2001) J Catal 204:305

    Article  CAS  Google Scholar 

  29. Xu AW, Gao Y, Liu HQ (2002) J Catal 2:151

    Article  Google Scholar 

  30. Matsuo S, Sakaguchi N, Yamada K, Matsuo T, Wakita H (2004) Appl Surf Sci 1–4:233

    Article  Google Scholar 

  31. Li FB, Li XZ, Hou MF (2004) Appl Catal B: Environ 48:185

    Article  CAS  Google Scholar 

  32. Xie YB, Yuan CW, Li XZ (2005) Mater Sci Eng B3:325

    Article  Google Scholar 

  33. Kimura T, Yoshikawa N, Matsumura N, Kawase Y (2004) J Environ Sci Health Part A 11–12:2867

    Article  Google Scholar 

  34. Qian SW, Wang ZY, Wang MQ (2003) J Mater Sci Eng 1:48 (in Chinese)

    Google Scholar 

  35. Overstone J, Yanagisawa K (1999) Chem Mater 11:2770

    Article  Google Scholar 

  36. Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) J Catal 217:69

    CAS  Google Scholar 

  37. Huang W, Tang X, Wang Y, Koltypin Y, Gendanken A (2000) Chem Commun 1415

  38. Yu JG, Zhou MH, Cheng B, Yu HG, Zhao XJ (2005) J Mol Catal A: Chem 227:75

    Article  CAS  Google Scholar 

  39. Mills A, Morris S (1993) J Photochem Photobiol A: Chem 71:75

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the fundamental research projects of Chongqing Institute of Technology and Chongqing Science and Technology Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, X., Tan, H., Zhao, Q. et al. Preparation of lanthanum-doped TiO2 photocatalysts by coprecipitation. J Mater Sci 42, 6287–6296 (2007). https://doi.org/10.1007/s10853-006-1022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1022-7

Keywords

Navigation