Skip to main content

Advertisement

Log in

Effects of milling conditions on hydrogen storage properties of graphite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two milling modes (shearing and impact) were applied to investigate the hydrogen storage properties of graphite. It was found that the shearing mode leads to 0.613 wt.% hydrogen absorbed in graphite, while impact mode leads to 2.718 wt.%. X-ray diffraction was used to investigate the structure of the as-milled and subsequent annealed samples. Differential scanning calorimetry was used to study thermally induced transformations in the as-milled samples. Infrared spectrometry was carried out to investigate the interaction between carbon and hydrogen atoms. Results are compared and discussed in conjunction with Laser desorption time-of-flight mass spectrometry results obtained earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Nature 386:377

    Article  CAS  Google Scholar 

  2. Kajiura H, Tsutsui S, Kadono K, Kakuta M, Ata M, Murakami Y (2003) Appl Phys Lett 82:1105

    Article  CAS  Google Scholar 

  3. Chambers A, Park C, Terry R, Baker K, Rodriguez NM (1998) J Phys Chem B 102:4253

    Article  CAS  Google Scholar 

  4. Züttel A, Sudan P, Mauron Ph, Kiyobayashi T, Emmenegger Ch, Schlapbach L (2002) Int J Hydrogen Energy 27:203

    Article  Google Scholar 

  5. Ichikawa T, Chen DM, Isobe S, Gomibuchi E, Fujii H (2004) Mater Sci Eng B 108:138

    Article  Google Scholar 

  6. Atsumi H, Tauchi K (2003) J Alloys Comp 356–357:705

    Article  Google Scholar 

  7. Orimo S, Majer G, Fukunaga T, Zuttel A, Schlapbach L, Fujii H (1999) Appl Phys Lett 75:3093

    Article  CAS  Google Scholar 

  8. Fukunaga T, Nagano K, Mizutani U, Wakayama H, Fukushima Y (1998) J Non-Cryst Solids 232–234:416

    Article  Google Scholar 

  9. Chen Y, Gerald JF, Chadderton LT, Chaffron L (1999) Appl Phys Lett 4:2782

    Article  Google Scholar 

  10. Kaneshenko SL, Gorodetsky AE, Chernikov VN, Markin AV, Zakharov AP, Doyle BL, Wampler WR (1996) J Nucl Mater 233–237:1207

    Article  Google Scholar 

  11. Haasz AA, Franzen P, Davis JW, Chiu S, Pitcher CS (1995) J Appl Phys 77:66

    Article  CAS  Google Scholar 

  12. Davis JW, Haasz AA (1995) J Nucl Mater 220–222:832

    Article  Google Scholar 

  13. Atsumi H, Iseki M, Shikama T (1996) J Nucl Mater 233–237:1128

    Article  Google Scholar 

  14. Gotoh Y (1997) J Nucl Mater 248:46

    Article  CAS  Google Scholar 

  15. Huang JY (1999) Acta Mater 7:1801

    Article  Google Scholar 

  16. Huang JY, Yasuda H, Mori H (1999) Chem Phys Lett 303:130

    Article  CAS  Google Scholar 

  17. Chen Y, Gerald JF, Chadderton LT, Chaffron L (1999) Appl Phys Lett 74:2782

    Article  CAS  Google Scholar 

  18. Ong TS, Yang H (2000) Carbon 38:2077

    Article  CAS  Google Scholar 

  19. Chen XH, Yang HS, Wu GT, Wang M, Deng FM, Zhang XB, Peng JC, Li WZ (2000) J Cryst Growth 218:57

    Article  CAS  Google Scholar 

  20. Calka A, Radlinski AP (1991) Mater Sci Eng A 134:1350

    Article  Google Scholar 

  21. Calka A, Nikolov JI (1995) NanoStructured Mater 6:409

    Article  CAS  Google Scholar 

  22. Smolira A, Szymanska M, Jartych E, Calka A, Michalak L (2005) J Alloys Comp 402:256

    Article  CAS  Google Scholar 

  23. Orimo S, Matsushima T, Fujii H, Fukunaga T, Majer G (2001) J Appl Phys 90:3

    Article  Google Scholar 

  24. Huang ZG, Calka A and Liu HK, J Mater Sci, doi: https://doi.org/10.1007/s10853-006-0382-3

    Article  CAS  Google Scholar 

  25. Calka A, Nikolov JI, Williams JS (1996) Mater Sci Forum 225–227:527

    Article  Google Scholar 

  26. Musumeci P, Calcagno L, Makhtari A, Baeri P, Compagnini G, Pirri CF (2000) Nucl Instr Meth Phys Res B 166–167:404

    Article  Google Scholar 

  27. Welham NJ, Berbenni V, Chapman PG (2003) J Alloys Comp 349:255

    Article  CAS  Google Scholar 

  28. Popescu B, Tagliaferro A, Da Zan F, Davis EA (2000) J Non-Cryst Solids 266–269:803

    Article  Google Scholar 

Download references

Acknowledgement

Financial support from the Australian Research Council through an ARC Discovery project (DP 0449660) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Calka, A. & Liu, H. Effects of milling conditions on hydrogen storage properties of graphite. J Mater Sci 42, 5437–5441 (2007). https://doi.org/10.1007/s10853-006-0785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0785-1

Keywords

Navigation