Skip to main content
Log in

Synthesis of TiC by controlled ball milling of titanium and carbon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium and carbon powder mixtures with compositions of Ti100−x C x (x = 50, 40, 30) were milled under a helium atmosphere using a magneto ball mill. Controlled ball milling was performed in a higher energy impact mode and a lower energy shearing mode. For Ti50C50 and Ti60C40 powder mixtures milled in impact mode, TiC was formed via a mechanically-induced self-propagating reaction (MSR). When milling Ti70C30 in impact mode, the reaction to form TiC proceeded gradually as milling progressed; indicating that, for milling conditions that lead to the formation of TiC via MSR, a minimum carbon content is required to sustain the self-propagating reaction to form TiC. Milling in shearing mode resulted in the gradual formation of TiC during milling. This study found that increasing the carbon content of the starting powder mixture slowed the milling process. Replacing the activated carbon starting powder with high purity graphite was found to have little effect on the ignition time; indicating that the slowing of the milling process is not due to graphite acting as a lubricant during milling. Rather, this slowing of the milling process is most likely due to an increased carbon content resulting in an increase in the volume of the powder mixture. This would have a similar effect during milling to decreasing the ball:powder weight ratio (BPR), which is known to slow the milling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ye LL, Quan MX (1995) Nanostruct Mater 5:25

    Article  CAS  Google Scholar 

  2. El-Eskandarany MS, Konno TJ, Suniyama K, Suzuki K (1996) Mater Sci Eng A A217/218:265

    CAS  Google Scholar 

  3. El-Eskandarany MS (1996) Metall Mater Trans A 27A:2374

    Google Scholar 

  4. Liu ZG, Guo JT, Ye LL, Li GS, Hu ZQ (1994) Appl Phys Lett 65:2666

    Article  CAS  Google Scholar 

  5. Koc R, Meng C, Swift GA (2000) J Mater Sci 35:3131

    Article  CAS  Google Scholar 

  6. El-Eskandarany MS (2000) J Alloys Comp 305:225

    Article  CAS  Google Scholar 

  7. Zhang S (1993) Mater Sci Eng A A163:141

    CAS  Google Scholar 

  8. Gutmanas EY, Gotman I (1999) J Eur Ceramic Soc 19:2381

    Article  CAS  Google Scholar 

  9. Santhanam AT, Tierny P, Hunt JL (1990) In: ASM Metals Handbook. ASM International, Ohio, p 950

  10. Ellis JL, Goetzel CG (1990) In: ASM Metals Handbook. ASM International, Ohio, p 978

  11. Ren RM, Yang ZG, Shaw LL (1998) Scr Materialia 38:735

    Article  CAS  Google Scholar 

  12. Schaffer GB, Forrester JS (1997) J Mater Sci 32:3157

    Article  CAS  Google Scholar 

  13. Kudaka K, Kiyokata I, Sasaki T (1999) J Ceramic Soc Japan 107:1019

    CAS  Google Scholar 

  14. Takacs L (1996) J Solid State Chem 125:75

    Article  CAS  Google Scholar 

  15. Wu NQ, Lin S, Wu JM, Li ZZ (1998) Mater Sci Technol 14:287

    CAS  Google Scholar 

  16. Xinkun Z, Kunyu Z, Baochang C, Qiushi L, Xiuqin Z, Tieli C, Yunsheng S (2001) Mater Sci Eng C 16:103

    Article  Google Scholar 

  17. Deidda C, Doppiu S, Monagheddu M, Cocco G (2003) J Metastable Nanocryst Mater 15–16:215

    Article  Google Scholar 

  18. Schaffer GB, Mccormick PG (1992) Mater Forum 16:91

    CAS  Google Scholar 

  19. Shen TD, Koch CC (1995) Nanostruct Mater 5:615–629

    Article  CAS  Google Scholar 

  20. El-Eskandarany MS, Ashour AH (2000) J Alloy Comp 313:224

    Article  CAS  Google Scholar 

  21. Pradhan SK, Chakraborty T, Sen Gupta SP, Suryanarayana C, Frefer A, Froes FH (1995) NanoStruct Mater 5:53

    Article  CAS  Google Scholar 

  22. Calka A, Radlinski AP (1991) Mater Sci Eng A 134:1350

    Article  Google Scholar 

  23. Varin RA, Bystrzycki J, Calka A (1999) Intermetallics 7:785

    Article  CAS  Google Scholar 

  24. Nuffield EW (1966) In: X-ray diffraction methods. John Wiley & Sons, Sydney

  25. Klug HP, Alexander LE (1954) In: X-ray diffraction procedures. John Wiley & Sons, New York

  26. Lipson H, Steeple H (1970) In: Interpretation of X-ray powder diffraction patterns. Macmillan, London

  27. Benjamin JS (1976) Sci Am 234:40

    Article  CAS  Google Scholar 

  28. Yen BK, Aizawa T, Kihara J (1998) J Am Ceramic Soc 81:1953

    Article  CAS  Google Scholar 

  29. Schaffer GB, McCormick PG (1991) Metall Trans A 22A:3019

    CAS  Google Scholar 

  30. Schaffer GB, McCormick PG (1992) Metall Trans A 23A:1285

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Australian Research Council, under ARC-Large Grant No. A00103022 and ARC-Discovery Grant No. DP0451907, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Lohse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohse, B.H., Calka, A. & Wexler, D. Synthesis of TiC by controlled ball milling of titanium and carbon. J Mater Sci 42, 669–675 (2007). https://doi.org/10.1007/s10853-006-0291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0291-5

Keywords

Navigation