Skip to main content
Log in

Irradiation of carbon nanotubes with a focused electron beam in the electron microscope

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper reviews in-situ electron irradiation studies of carbon nanotubes in electron microscopes. It is shown that electron irradiation at high specimen temperature can lead to a variety of structural modifications and new morphologies of nanotubes. Radiation defects such as vacancies and interstitials are created under irradiation, but the cylindrically closed graphene layers reconstruct locally and remain coherent. The generation of curvature in graphene layers with non-hexagonal rings allows us to alter the topology of nanotubes. Several examples of irradiation-induced modifications of single- and multi-wall nanotubes are shown. Conclusions about the mobility of interstitials and vacancies are drawn which are important to explain the behaviour and the properties of nanotubes with an atomic arrangement deviating from the hexagonal network of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press

  2. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  3. Crespi VH, Chopra NG, Cohen ML, Zettl A, Louie SG (1996) Phys Rev B 54:5927

    Article  CAS  Google Scholar 

  4. Kelly BT (1981) The physics of graphite, Applied Science, London

    Google Scholar 

  5. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Nat Acad Sci 102:10451

    Article  CAS  Google Scholar 

  6. Koike J, Pedraza DF (1994) J Mater Res 9:1899

    Article  CAS  Google Scholar 

  7. Telling RH, Ewels CP, El-Barbary AA, Heggie MI (2003) Nat Mater 2:333

    Article  CAS  Google Scholar 

  8. Urita K, Suenaga K, Sugai T, Shinohara H, Iijima S (2005) Phys Rev Lett 94:155502

    Article  Google Scholar 

  9. Ugarte D (1992) Nature 359:707

    Article  CAS  Google Scholar 

  10. Banhart F (1999) Rep Progr Phys 62:1181

    Article  CAS  Google Scholar 

  11. Smith BW, Luzzi DE (2001) J Appl Phys 90:3509

    Article  CAS  Google Scholar 

  12. Burden AP, Hutchison JL (1996) J Cryst Growth 158:185

    Article  CAS  Google Scholar 

  13. Krasheninnikov AV, Lehtinen PO, Foster AS, Nieminen RM (2006) Chem Phys Lett 418:132

    Article  CAS  Google Scholar 

  14. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    Article  CAS  Google Scholar 

  15. Terrones H, Terrones M, Hsu WK (1995) Chem Soc Rev 24:341

    Article  CAS  Google Scholar 

  16. Terrones H, Terrones M, Hernandez E, Grobert N, Charlier J-C, Ajayan PM (2000) Phys Rev Lett 84:1716

    Article  CAS  Google Scholar 

  17. Krasheninnikov A, Nordlund K, Keinonen J (2002) Phys Rev B 65:165423

    Article  Google Scholar 

  18. Krasheninnikov A, Nordlund K (2004) Nucl Instr Meth B 216:355

    Article  CAS  Google Scholar 

  19. Banhart F, Li JX, Krasheninnikov AV (2005) Phys Rev B 71:241408

    Article  Google Scholar 

  20. Ajayan PM, Ravikumar V, Charlier J-C (1998) Phys Rev Lett 81:1437

    Article  CAS  Google Scholar 

  21. Peng HY, Wang N, Zheng YF, Lifshitz Y, Kulik J, Zhang RQ, Lee CS, Lee ST (2000) Appl Phys Lett 77:2831

    Article  CAS  Google Scholar 

  22. Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y (2004) Phys Rev Lett 92:125502

    Article  CAS  Google Scholar 

  23. Krasheninnikov AV, Banhart F, Li JX, Foster AS, Nieminen RM (2005) Phys Rev B 72:125428

    Article  Google Scholar 

  24. Li JX, Banhart F (2004) Nano Lett 4:1143

    Article  CAS  Google Scholar 

  25. Banhart F, Li JX, Terrones M (2005) Small 1:953

    Article  CAS  Google Scholar 

  26. Terrones M, Terrones H, Banhart F, Charlier J-C, Ajayan PM (2000) Science 288:1226

    Article  CAS  Google Scholar 

  27. Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Phys Rev Lett 89:075505

    Article  CAS  Google Scholar 

  28. Yoon M, Han S, Kim G, Lee S, Berber S, Osawa E, Ihm J, Terrones M, Banhart F, Charlier J-C, Grobert N, Terrones H, Ajayan P M, Tománek D (2004) Phys Rev Lett 92:075504

    Article  Google Scholar 

  29. Miko C, Milas M, Seo JW, Couteau E, Barisic N, Gaal R, Forro L (2003) Appl Phys Lett 83:4622

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to J.X. Li, L. Sun, A. Krasheninnikov, M. Terrones, P.M. Ajayan, D. Tománek, J.-C. Charlier, N. Grobert, Ph. Kohler-Redlich, T. Füller, and M. Ozawa for good collaboration during many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Banhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banhart, F. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 41, 4505–4511 (2006). https://doi.org/10.1007/s10853-006-0081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0081-0

Keywords

Navigation