Skip to main content
Log in

Atomic and electronic structure of [0001]/(\(\bar{1}\bar{2}30\)) Σ7 symmetric tilt grain boundary in ZnO bicrystal with linear current-voltage characteristic

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The atomic and electronic structures of [0001]/(\(\bar{1}\bar{2}30\)) Σ 7 symmetric tilt grain boundary in an undoped ZnO bicrystal were investigated by high-resolution transmission electron microscopy (HRTEM) and first-principles calculations. HRTEM imaging and atomistic calculations revealed that the grain boundary was composed of at least two types of structural units. It was also found that one of the structural units has two threefold-coordinated atoms per a unit and the other has two fivefold-coordinated atoms. First-principles calculations indicated that these atoms with various coordination numbers do not form deep unoccupied electronic states in the band gap of ZnO, which is in consistency with a linear current-voltage characteristic observed for the bicrystal with the Σ 7 boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. KOHYAMA, Model. Simul. Mater. Sci. Eng 10 (2002) R31.

    Article  Google Scholar 

  2. P. P. ALTERMATT and G. HEISER, J. Appl. Phys 92 (2002) 2561.

    Article  Google Scholar 

  3. J. W. TRINGE and J. D. PLUMMER, ibid 87 (2000) 7913.

    Article  Google Scholar 

  4. D. R. CLARKE, J. Am. Ceram. Soc 82 (1999) 485.

    Google Scholar 

  5. M. MATSUOKA, Jpn. J. Appl. Phys 10 (1971) 736.

    Google Scholar 

  6. K. MUKAE, K. TSUDA and I. NAGASAWA, ibid 16 (1977) 1361.

    Google Scholar 

  7. W. HEYWANG, J. Am. Ceram. Soc 47 (1964) 484.

    Google Scholar 

  8. K. HAYASHI, T. YAMAMOTO and T. SAKUMA, ibid 79 (1996) 1669.

    Google Scholar 

  9. K. HAYASHI, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, J. Appl. Phys 86 (1999) 2909.

    Article  Google Scholar 

  10. M. KOHYAMA and R. YAMAMOTO, Phys. Rev. B 49 (1994) 17102.

    Google Scholar 

  11. Idem, ibid 50 (1994) 8502.

    Article  Google Scholar 

  12. M. YODOGAWA, Y. IKUHARA, F. OBA and I. TANAKA, Key Eng. Mater. 157/158 (1999) 249.

    Google Scholar 

  13. F. OBA, S. R. NISHITANI, H. ADACHI, I. TANAKA, M. KOHYAMA and S. TANAKA, Phys. Rev. B 63 (2001) 045410-1.

    Article  Google Scholar 

  14. F. OBA, I. TANAKA, S. R. NISHITANI, H. ADACHI, B. SLATER and D. H. GAY, Philos. Mag. A 80 (2000) 1567.

    Google Scholar 

  15. F. OBA, H. OHTA, Y. SATO, H. HOSONO, T. YAMAMOTO and Y. IKUHARA, Phys. Rev. B (in press).

  16. J. M. CARLSSON, B. HELLSING, H. S. DOMINGOS and P. D. BRISTOWE, J. Phys: Condens. Matter 13 (2001) 9937.

    Google Scholar 

  17. H. S. DOMINGOS and P. D. BRISTOWE, Comput. Mater. Sci 22(1) (2001) 38.

    Article  Google Scholar 

  18. J. M. CARLSSON, H. S. DOMINGOS, B. HELLSING and P. D. BRISTOWE, Interf. Sci 9 (2001) 143.

    Article  Google Scholar 

  19. A. KISELEV, F. SARRAZIT, E. STEPANTSOV, E. OLSSON, T. CLASON, V. BONDARENKO, R. POND and N. KISELEV, Philos. Mag. A 76 (1997) 633.

    Google Scholar 

  20. J. M. CARLSSON, H. S. DOMINGOS, P. D. BRISTOWE and B. HELLSING, Phys. Rev. Lett 91 (2003) 165506.

    Google Scholar 

  21. Y. SATO, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, J. Am. Ceram. Soc 85 (2002) 2142.

    Google Scholar 

  22. Y. SATO, T. TANAKA, F. OBA, T. YAMAMOTO, Y. IKUHARA and T. SAKUMA, Sci. Technol. Adv. Mater 4 (2003) 605.

    Article  Google Scholar 

  23. N. OHASHI, Y. TERADA, T. OHGAKI, S. TANAKA, T. TSURUMI, O. FUKUNAGA, H. HANEDA and J. TANAKA, Jpn. J. Appl. Phys. Part 1 38 (1999) 5028.

    Article  Google Scholar 

  24. J. D. GALE, J. Chem. Soc. Faraday Trans 93 (1997) 629.

    Article  Google Scholar 

  25. G. V. LEWIS and C. R. A. CATLOW, J. Phys. C: Solid State Phys 18 (1985) 1149.

    Article  Google Scholar 

  26. J. M. COWLEY and A. F. MOODIE, Acta Cryst 10 (1957) 609.

    Article  Google Scholar 

  27. W. Y. CHING, J. Am. Ceram. Soc 73 (1990) 3135.

    Article  Google Scholar 

  28. J. P. PERDEW and A. ZUNGER, Phys. Rev. B 23 (1981) 5048.

    Article  Google Scholar 

  29. H. J. MONKHORST and J. D. PACK, ibid 13 (1976) 5188.

    Article  Google Scholar 

  30. A. BÉRÉ and A. SERRA, ibid 66 (2002) 205323.

    Article  Google Scholar 

  31. V. POTIN, P. RUTERANA, G. NOUET, R. C. POND and H. MORKOÇ, ibid 61 (2000) 5587.

    Article  Google Scholar 

  32. A. BÉRÉ and A. SERRA, ibid 65 (2002) 085330.

    Google Scholar 

  33. J. CHEN, P. RUTERANA and G. NOUET, Mater. Sci. Eng. B 82 (2001) 117.

    Article  Google Scholar 

  34. Y. XIN, S. J. PENNYCOOK, N. D. BROWNING, P. D. NELLIST, S. SIVANANTHAN, F. OMNÉS, B. BEAUMONT, J. P. FAURIE and P. GIBART, Appl. Phys. Lett 72 (1998) 2680.

    Article  Google Scholar 

  35. V. SRIKANT and D. R. CLARKE, J. Appl. Phys 83 (1998) 5447.

    Article  Google Scholar 

  36. P. SCHRÖER, P. KRÜGER and J. POLLMANN, Phys. Rev. B 47 (1993) 6971.

    Article  Google Scholar 

  37. Idem, ibid 54, 5495 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Mizoguchi, T., Oba, F. et al. Atomic and electronic structure of [0001]/(\(\bar{1}\bar{2}30\)) Σ7 symmetric tilt grain boundary in ZnO bicrystal with linear current-voltage characteristic. J Mater Sci 40, 3059–3066 (2005). https://doi.org/10.1007/s10853-005-2665-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2665-5

Keywords

Navigation