Skip to main content
Log in

Multi-scale Arithmetization of Linear Transformations

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A constructive nonstandard interpretation of a multiscale affine transformation scheme is presented. It is based on the \(\Omega \)-numbers of Laugwitz and Schmieden and on the discrete model of the real line of Reeb and Harthong. In this setting, the nonstandard version of the Euclidean affine transformation gives rise to a sequence of quasi-linear transformations over integer spaces, allowing integer-only computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In [5, 17], it is stated that \(\forall x\in \mathscr {H}\!\mathscr {R}_{\omega }, x\ne _\omega 0, \exists y\in \mathscr {H}\!\mathscr {R}_{\omega }\) such that \(x\times _{\omega }y=_\omega 1\), but the relation \(\ne _\omega \) is not the negation of the relation \(=_\omega \) (in [17], the implementation in the Coq system relies on the intuitionistic logic, so it does not make use of the law of the excluded middle). In this paper, the structure \((\mathscr {H}\!\mathscr {R}_{\omega },+,\times _{\omega })\) needs not be a field, just a ring and we make no use of the relation \(\ne _\omega \) so the assertions can be understood in both classical and intuitionistic logics.

  2. Given an equivalence relation, a section is the choice of a representative, while the converse operation is called projection.

References

  1. Blot, V., Cœurjolly, D.: Quasi-affine transformation in higher dimension. In: DGCI, LNCS, vol. 5810, pp. 493–504 (2009). https://doi.org/10.1007/978-3-642-04397-0_42

  2. Chollet, A.: Non classical formalisms for the computing treatment of the topology and the discrete geometry. Ph.D. thesis, Université de La Rochelle. https://tel.archives-ouvertes.fr/tel-00579781 (2010). Accessed 16 Oct 2018

  3. Chollet, A., Wallet, G., Andres, E., Fuchs, L., Largeteau-Skapin, G., Richard, A.: Omega-arithmetization of ellipses. In: CompIMAGE, pp. 24–35 (2010). https://doi.org/10.1007/978-3-642-12712-0_3

  4. Chollet, A., Wallet, G., Fuchs, L., Andres, A., Largeteau-Skapin, G.: Omega-arithmetization: A discrete multi-resolution representation of real functions. In: IWCIA, pp. 316–329 (2009). https://doi.org/10.1007/978-3-642-10210-3_25

  5. Chollet, A., Wallet, G., Fuchs, L., Andres, E., Largeteau-Skapin, G.: Foundational aspects of multiscale digitization. Theor. Comput. Sci. 466, 2–19 (2012). https://doi.org/10.1016/j.tcs.2012.07.026

    Article  MathSciNet  MATH  Google Scholar 

  6. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in discrete geometry and computational content of a discrete model of the continuum. Pattern Recognit. 42(10), 2220–2228 (2009). https://doi.org/10.1016/j.patcog.2008.12.005

    Article  MATH  Google Scholar 

  7. Coeurjolly, D., Blot, V., Jacob-Da Col, M.A.: Quasi-affine transformation in 3-d: theory and algorithms. In: IWCIA, LNCS, vol 5852, pp. 68–81 (2009). https://doi.org/10.1007/978-3-642-10210-3_6

  8. Diener, F., Reeb, G.: Analyse Non Standard. Hermann, Paris (1989)

    MATH  Google Scholar 

  9. Fuchs, L., Largeteau-Skapin, G., Wallet, G., Andres, E., Chollet, A.: A first look into a formal and constructive approach for discrete geometry using nonstandard analysis. In: DGCI, LNCS, pp. 21–32 (2008). https://doi.org/10.1007/978-3-540-79126-3_4

  10. Harthong, J.: Une théorie du continu. In: Les mathématiques non standard, pp. 307–329 (1989)

  11. Jacob, M.A.: Applications quasi-affines. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1993)

  12. Jacob-Da Col, M.A.: Applications quasi-affines et pavages du plan discret. Theor. Comput. Sci. 259(1–2), 245–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacob-Da Col, M.A., Mazo, L.: nD quasi-affine transformations. In: DGCI, LNCS, pp. 337–348 (2016). https://doi.org/10.1007/978-3-319-32360-2_26

  14. Jacob-Da Col, M.A., Reveillès, J.P.: Gaussian numeration systems. In: DGCI, LNCS, pp. 37–47 (1995). https://dpt-info.u-strasbg.fr/~jacob

  15. Jacob-Da Col, M.A., Tellier, P.: Quasi-linear transformations and discrete tilings. Theor. Comput. Sci. 410(21), 2126–2134 (2009). https://doi.org/10.1016/j.tcs.2009.01.032

    Article  MathSciNet  MATH  Google Scholar 

  16. Laugwitz, D.: \(\Omega \)-calculus as a generalization of field extension: An alternative approach to nonstandard analysis. In: Nonstandard Analysis-Recent Developments, LNM, pp. 120–133. Springer (1983)

  17. Magaud, N., Chollet, A., Fuchs, L.: Formalizing a discrete model of the continuum in coq from a discrete geometry perspective. Ann. Math. Artif. Intell. 74(3–4), 309–332 (2015). https://doi.org/10.1007/s10472-014-9434-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Nehlig, P.: Applications quasi-affines: pavages par images réciproques. Theor. Comput. Sci. 156(1&2), 1–38 (1996). https://doi.org/10.1016/0304-3975(95)00040-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg (1991)

  20. Reveillès, J.P., Richard, D.: Back and forth between continuous and discrete for the working computer scientist. Ann. Math. Artif. Intell. 16(1), 89–152 (1996). https://doi.org/10.1007/BF02127796

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmieden, C., Laugwitz, D.: Eine erweiterung der infinitesimalrechnung. Math. Z. 69, 1–39 (1958)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Mazo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazo, L. Multi-scale Arithmetization of Linear Transformations. J Math Imaging Vis 61, 432–442 (2019). https://doi.org/10.1007/s10851-018-0853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0853-6

Keywords

Navigation