Skip to main content
Log in

Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Digital planes are sets of integer points located between two parallel planes. We present a new algorithm that computes the normal vector of a digital plane given only a predicate “is a point x in the digital plane or not”. In opposition to classical recognition algorithm, this algorithm decides on-the-fly which points to test in order to output at the end the exact surface characteristics of the plane. We present two variants: the H-algorithm, which is purely local, and the R-algorithm which probes further along rays coming out from the local neighborhood tested by the H-algorithm. Both algorithms are shown to output the correct normal to the digital planes if the starting point is a lower leaning point. The worst-case time complexity is in \(O(\omega )\) for the H-algorithm and \(O(\omega \log \omega )\) for the R-algorithm, where \(\omega \) is the arithmetic thickness of the digital plane. In practice, the H-algorithm often outputs a reduced basis of the digital plane while the R-algorithm always returns a reduced basis. Both variants perform much better than the theoretical bound, with an average behavior close to \(O(\log \omega )\). Finally, we show how this algorithm can be used to analyze the geometry of arbitrary digital surfaces, by computing normals and identifying convex, concave or saddle parts of the surface. This paper is an extension of Lachaud et al. (Proceedings of 19th IAPR international conference discrete geometry for computer imagery (DGCI’2016), Nantes, France. Springer, Cham, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berthé, V., Fernique, T.: Brun expansions of stepped surfaces. Discrete Math. 311(7), 521–543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Charrier, E., Buzer, L.: An efficient and quasi linear worst-case time algorithm for digital plane recognition. In: Discrete Geometry for Computer Imagery (DGCI’2008), LNCS, vol. 4992, pp. 346–357. Springer, Berlin (2008)

  4. Charrier, E., Lachaud, J.O.: Maximal planes and multiscale tangential cover of 3d digital objects. In: Proceedings of International Workshop Combinatorial Image Analysis (IWCIA’2011), Lecture Notes in Computer Science, vol. 6636, pp. 132–143. Springer, Berlin (2011)

  5. Chica, A., Williams, J., Andújar, C., Brunet, P., Navazo, I., Rossignac, J., Vinacua, A.: Pressing: smooth isosurfaces with flats from binary grids. Comput. Graph. Forum 27(1), 36–46 (2008)

    Article  Google Scholar 

  6. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Image Vis. 27(2), 471–502 (2007)

    Google Scholar 

  7. Doerksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties for Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 145–160. Springer, Berlin (2006)

    Chapter  Google Scholar 

  8. Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 42(10), 2229–2238 (2009)

    Article  MATH  Google Scholar 

  9. Feschet, F.: Canonical representations of discrete curves. Pattern Anal. Appl. 8(1), 84–94 (2005)

    Article  MathSciNet  Google Scholar 

  10. Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1), 169–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jamet, D., Toutant, J.L.: Minimal arithmetic thickness connecting discrete planes. Discrete Appl. Math. 157(3), 500–509 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 2379–2392 (2012)

    Article  Google Scholar 

  13. Kim, C.E., Stojmenović, I.: On the recognition of digital planes in three-dimensional space. Pattern Recogn. Lett. 12(11), 665–669 (1991)

    Article  Google Scholar 

  14. Klette, R., Rosenfeld, A.: Digital straightness—a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klette, R., Sun, H.J.: Digital planar segment based polyhedrization for surface area estimation. In: Proceedings of Visual form 2001, LNCS, vol. 2059, pp. 356–366. Springer, Berlin (2001)

  16. Labbé, S., Reutenauer, C.: A d-dimensional extension of Christoffel words. In: Discrete and Computational Geometry p. 26 (to appear). ArXiv:1404.4021

  17. Lachaud, J.O., Provençal, X., Roussillon, T.: Computation of the normal vector to a digital plane by sampling significant points. In: N. Normand, J. Guédon, F. Autrusseau (eds.) Proceedings of 19th IAPR International Conference Discrete Geometry for Computer Imagery (DGCI’2016), Nantes, France, April 18–20, 2016., pp. 194–205. Springer, Cham (2016)

  18. Lachaud, J.O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. Theor. Comput. Sci. 624, 73–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vis. Comput. 25(10), 1572–1587 (2007)

    Article  Google Scholar 

  20. Provot, L., Debled-Rennesson, I.: 3D noisy discrete objects: segmentation and application to smoothing. Pattern Recogn. 42(8), 1626–1636 (2009)

    Article  MATH  Google Scholar 

  21. Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recogn. 44(10–11), 2693–2700 (2011)

    Article  MATH  Google Scholar 

  22. Veelaert, P.: Digital planarity of rectangular surface segments. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 647–652 (1994)

    Article  Google Scholar 

  23. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21(1), 45–57 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Roussillon.

Additional information

This work has been partly funded by DigitalSnow ANR-11-BS02-009 research grant and CoMeDiC ANR-15-CE40-0006 research grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachaud, JO., Provençal, X. & Roussillon, T. Two Plane-Probing Algorithms for the Computation of the Normal Vector to a Digital Plane. J Math Imaging Vis 59, 23–39 (2017). https://doi.org/10.1007/s10851-017-0704-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0704-x

Keywords

Mathematics Subject Classification

Navigation