Skip to main content
Log in

Exact Histogram Specification for Digital Images Using a Variational Approach

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We consider the problem of exact histogram specification for digital (quantized) images. The goal is to transform the input digital image into an output (also digital) image that follows a prescribed histogram. Classical histogram modification methods are designed for real-valued images where all pixels have different values, so exact histogram specification is straightforward. Digital images typically have numerous pixels which share the same value. If one imposes the prescribed histogram to a digital image, usually there are numerous ways of assigning the prescribed values to the quantized values of the image. Therefore, exact histogram specification for digital images is an ill-posed problem. In order to guarantee that any prescribed histogram will be satisfied exactly, all pixels of the input digital image must be rearranged in a strictly ordered way. Further, the obtained strict ordering must faithfully account for the specific features of the input digital image. Such a task can be realized if we are able to extract additional representative information (called auxiliary attributes) from the input digital image. This is a real challenge in exact histogram specification for digital images. We propose a new method that efficiently provides a strict and faithful ordering for all pixel values. It is based on a well designed variational approach. Noticing that the input digital image contains quantization noise, we minimize a specialized objective function whose solution is a real-valued image with slightly reduced quantization noise, which remains very close to the input digital image. We show that all the pixels of this real-valued image can be ordered in a strict way with a very high probability. Then transforming the latter image into another digital image satisfying a specified histogram is an easy task. Numerical results show that our method outperforms by far the existing competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. E.g., \(D_{1}^{j}\mathcal{J}\) is the jth differential of \(\mathcal{J}\) in (2) with respect f and \(D_{2}^{j}\mathcal{J}\) is with respect to u.

  2. Here we use the terminology in [19].

  3. For 512×512, 8-bits images, this value is \(255^{ {512}^{2}}\)—the amount of all 512×512, 8-bits pictures that people can ever take with their digital cameras.

  4. These polynomial functions yield also arbitrarily large values that exceed the bounded set \(\mathcal{P}\).

  5. If we had \(g^{T}D\mathcal{F}(\mathbf{u})=0\) then \(g^{T}=\left(D\mathcal {F}(\mathbf{u})\right )^{-1}0=0\) which would contradict the fact that \(g \in\mathcal{G}\).

  6. We use the following extension of the constant rank theorem, restated in our context (for details one can check [4, p. 96]). Let f be a \(\mathcal{C}^{s}\) application from an open set \(\mathcal{O}\subset\mathbb{R}^{n}\) to ℝ. Assume that Df(u) has constant rank r for all \(\mathbf{u}\in\mathcal{O}\). Given a c∈ℝ, the inverse image f −1(c) (supposed nonempty) is a \(\mathcal{C}^{s}\)-manifold of ℝn of dimension nr.

  7. Remind that A=A T.

References

  1. Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

    Article  MathSciNet  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Avanaki, A.N.: Exact global histogram specification optimized for structural similarity. Opt. Rev. 16(6), 613–621 (2009)

    Article  Google Scholar 

  4. Avez, A.: Calcul Différentiel. Masson, Paris (1991)

    Google Scholar 

  5. Baus, F., Nikolova, M., Steidl, G.: Fully smoothed 1−TV models: bounds for the minimizers and parameter choice. Tech. report, hal-00722743, v2. See http://hal.archives-ouvertes.fr/hal-00722743

  6. Bonnans, J.-F., Gilbert, J.-C., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization (Theoretical and Practical Aspects). Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  7. Bioucas-Dias, J., Figueiredo, M., Nowak, R.: Total variation-based image deconvolution: a majorization-minimization approach. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2006, vol. 2, pp. 861–864, 14–19 May (2006)

    Google Scholar 

  8. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications to early vision. Int. J. Comput. Vis. 19, 57–91 (1996)

    Article  Google Scholar 

  9. De Bruijn, N.G.: Some classes of integer-valued functions. Indag. Math. 17(3) (1955)

  10. Cahen, P.-J., Chabert, J.-L.: Integer-valued Polynomials. Mathematical Surveys and Monographs, vol. 48. Amer. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  11. Chan, R., Nikolova, M., Wen, Y.: A variational approach for exact histogram specification. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 86–97 (2012)

    Chapter  Google Scholar 

  12. Chen, S., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  13. Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognit. 34(12), 2259–2281 (2001)

    Article  MATH  Google Scholar 

  14. Ciarlet, P.G.: Introduction to Numerical Linear Algebra and Optimization. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  15. Coltuc, D., Bolon, P.: Robust watermarking by histogram specification. In: Image Processing. International Conference on ICIP 99, vol. 2, pp. 236–239. IEEE, New York (1999). 1999

    Google Scholar 

  16. Coltuc, D., Bolon, P., Chassery, J.-M.: Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  17. Cox, I.J., Roy, S., Hingorani, S.L.: Dynamic histogram warping of image pairs for constant image brightness. In: International Conference on Image Processing, vol. 2, pp. 366–369 (1995)

    Google Scholar 

  18. Delon, J.: Midway image equalization. J. Math. Imaging Vis. 21(2), 119–134 (2004)

    Article  MathSciNet  Google Scholar 

  19. Dontchev, A.L., Zollezi, T.: Well-Posed Optimization Problems. Springer, New York (1993)

    MATH  Google Scholar 

  20. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Roca Baton (1992)

    MATH  Google Scholar 

  21. Ferradans, S., Xia, G.-S., Peyré, G., Aujol, J.-F.: Optimal transport mixing of Gaussian texture models. Tech. report, Preprint Hal-00662720 (2012)

  22. Fiacco, A., McCormic, G.: Nonlinear Programming. Classics in Applied Mathematics. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  23. Figueiredo, M.A.T., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007)

    Article  MathSciNet  Google Scholar 

  24. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Beijing (2005)

    Google Scholar 

  25. Gousseau, Y., Morel, J.M.: Are natural images of bounded variation? SIAM J. Math. Anal. 33(3), 634–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hall, E.L.: Almost uniform distributions for computer image enhancement. IEEE Trans. Comput. C-23, 207–208 (1974)

    Article  Google Scholar 

  27. Hazewinkel, M. (ed.): Diophantine Equations. Encyclopaedia of Mathematics. Springer, Berlin (2001)

    Google Scholar 

  28. Hunter, D., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58(1), 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  29. Jongen, H.T., Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions, 1st edn. Kluwer Academic, Amsterdam (1986)

    Google Scholar 

  30. Kim, Y.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  31. Lafontaine, J.: Introduction aux Variétés Différentielles, 2nd edn. EDP Sciences, France (2010)

    Google Scholar 

  32. Krishnan, D., Lin, P., Tai, X.: An efficient operator splitting method for noise removal in images. Commun. Comput. Phys. 1, 847–858 (2006)

    MATH  Google Scholar 

  33. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  34. Mignotte, M.: An energy based model for the image edge histogram specification problem. IEEE Trans. Image Process. 21, 379–386 (2012)

    Article  MathSciNet  Google Scholar 

  35. Mumford, D., Desolneux, A.: Pattern Theory: The Stochastic Analysis of Real-World Signals. A.K. Peters, Natick (2010)

    MATH  Google Scholar 

  36. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103(1), 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40, 49–71 (2000)

    Article  MATH  Google Scholar 

  38. Lysaker, M., Tai, X.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1357 (2004)

    Article  MathSciNet  Google Scholar 

  39. Narasimhan, S., Nayar, S.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25, 713–724 (2003)

    Article  Google Scholar 

  40. Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vis. 84(1), 97–111 (2009)

    Article  Google Scholar 

  41. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61, 633–658 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  43. Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  44. Pólya, G.: Über ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo 40, 1–16 (1915)

    Article  MATH  Google Scholar 

  45. Pratt, W.K.: Digital Image Processing, 2nd edn. Wiley, New York (1991)

    MATH  Google Scholar 

  46. Rosenfeld, A., Kak, K.: Digital Picture Processing. Academic Press, Upper Saddle River (1982)

    Google Scholar 

  47. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. 38(1), 35–44 (2004)

    Article  Google Scholar 

  48. Rolland, J.-P., Vo, V., Bloss, B., Abbey, C.K.: Fast algorithms for histogram matching: Application to texture synthesis. J. Electron. Imaging 9(1), 39–45 (2000)

    Article  Google Scholar 

  49. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  50. Russ, J.C.: The Image Processing Handbook, 2nd edn. CRC Press, New York (1995)

    Google Scholar 

  51. Sapiro, G., Caselles, V.: Histogram modification via partial differential equations. In: International Conference on Image Processing 1995, vol. 3, pp. 632–635. IEEE, New York (2002)

    Google Scholar 

  52. Sen, D., Sankar, P.: Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation. IEEE Trans. Image Process. 20, 1211–1220 (2011)

    Article  MathSciNet  Google Scholar 

  53. Sim, K., Tso, C., Tan, Y.: Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognit. Lett. 28, 1209–1221 (2007)

    Article  Google Scholar 

  54. Tan, T., Sim, K., Tso, C.: Image enhancement using background brightness preserving histogram equalisation. Electron. Lett. 48(3), 155–157 (2012)

    Article  Google Scholar 

  55. Vogel, C., Oman, M.: Iterative method for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Wan, Y., Shi, D.: Joint exact histogram specification and image enhancement through the wavelet transform. IEEE Trans. Image Process. 16(9), 2245–2250 (2007)

    Article  MathSciNet  Google Scholar 

  57. Wang, C., Ye, Z.: Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans. Consum. Electron. 51(4), 1326–1334 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Chan.

Additional information

Y.-W. Wen research was supported in part by NFSC Grant.

R. Chan research was supported in part by HKRGC Grant CUHK400412 and DAG Grant 2060408.

Appendix A

Appendix A

Given a square matrix A, the expression A≻0 means that A is positive definite and A⪰0 that A is positive semi-definite.

1.1 A.1 Proof of Proposition 1

By Hypothesis 1, for any u∈ℝn, the function \(\mathcal {J}(\cdot,\mathbf{u})\) in (2) is strictly convex and coercive, hence for any u and β>0, it has a unique minimizer. Each minimizer point \(\widehat{\mathbf{f}}\) of \(\mathcal{J}(\widehat {\mathbf{f}},\mathbf{u})\) is determined by \(D_{1}\mathcal{J}(\widehat{\mathbf{f}},\mathbf{u})=0\). We have

$$ 0=D_1\mathcal{J}(\widehat{\mathbf{f}},\mathbf{u})=D_1\varPsi (\widehat{\mathbf{f}},\mathbf{u})+\beta D_1\varPhi(\widehat {\mathbf{f}}), $$
(19)

where

(20)

Differentiation with respect to \(\widehat{\mathbf{f}}\) yet again yields

$$ D_1^2\mathcal{J}(\widehat{\mathbf{f}},\mathbf{u})=D_1^2\varPsi (\widehat{\mathbf{f}},\mathbf{u})+\beta D_1^2\varPhi (\widehat{\mathbf{f}})\in \mathbb{R}^{n\times n}. $$
(21)

Here, \(D_{1}^{2}\varPsi(\widehat{\mathbf{f}},\mathbf{u})\) is an n×n diagonal matrix with strictly positive entries according to Hypothesis 1:

$$ D_1^2\varPsi(\widehat{\mathbf{f}},\mathbf{u})[i,i]=\psi''(\widehat {\mathbf{f}}[i]-\mathbf{u}[i]),\quad\,\forall i\in\mathbb{I}_n. $$
(22)

Hence \(D_{1}^{2}\varPsi(\mathcal{F}(\mathbf{u}),\mathbf{u})\succ0\). Furthermore,

$$ D_1^2\varPhi(\widehat{\mathbf{f}})=G^T\mathrm{diag}\Big(\phi ''(\mathbf{g}_{1}^T\widehat{\mathbf{f}}),\ldots, \phi''(\mathbf{g}_{r}^T\widehat{\mathbf{f}})\Big)G, $$
(23)

so \(D_{1}^{2}\varPhi(\widehat{\mathbf{f}})\succeq0\). It follows that \(D_{1}^{2}\mathcal{J}(\widehat{\mathbf{f}},\mathbf{u})\succ0\), for any u∈ℝn.

Consequently, Lemma 1 holds true for any u∈ℝn and any β>0. The same lemma shows that the statement of Proposition 1 holds true for \(\mathcal{O}=\mathbb{R}^{n}\).

1.2 A.2 Proof of Lemma 2

Since \(\mathcal{F}\) is a local minimizer function,

$$ D_1\mathcal{J}(\mathcal{F}(\mathbf{u}),\mathbf{u})=0,\quad\forall \mathbf{u}\in\mathbb{R}^n. $$
(24)

We can thus differentiate with respect to u on both sides of (24) which yields

$$D_1^2\mathcal{J}(\mathcal{F}(\mathbf{u}),\mathbf {u})D\mathcal{F}(\mathbf{u})+D_2D_1\mathcal{J}(\mathcal{F}(\mathbf {u}),\mathbf{u} )=0,\quad\forall\mathbf{u}\in\mathbb{R}^n. $$
(25)

Note that \(D\mathcal{F}(\mathbf{u})\) and \(D_{2}D_{1}\mathcal{J}(\mathcal {F}(\mathbf{u}),\mathbf{u})\) are n×n real matrices. The Hessian matrix \(H(\mathbf{u})=D_{1}^{2}\mathcal{J}(\mathcal {F}(\mathbf{u}),\mathbf{u})\) can be expanded using (21):

$$H(\mathbf{u})=D_1^2\varPsi(\mathcal{F}(\mathbf{u}),\mathbf {u})+\beta D_1^2\varPhi(\mathcal{F}(\mathbf{u} ))\in \mathbb{R}^{n\times n}. $$

Replacing \(\widehat{\mathbf{f}}\) by \(\mathcal{F}(\mathbf{u})\) in (22) and (23) yields

as stated in (5). Using Hypothesis 1, it is readily seen that

Then H(u)≻0, hence H(u) is invertible.

Using (19) and (A.1), where we consider \(\mathcal {F}(\mathbf{u})\) in place of \(\widehat{\mathbf{f}}\), shows that

(26)

Then (25) is equivalent to

(27)

Obviously, \(\mathrm{rank}\big(D\mathcal{F}(\mathbf{u})\big)=n\). This result is independent of the value of β>0.

1.3 A.3 Proof of Theorem 1

The proof consists of two parts.

(I) Given \(g\in\mathcal{G}\), where \(\mathcal{G}\) is given in (8), consider the function f g :ℝn→ℝ defined by

$$f_g(\mathbf{u})=g^T\mathcal{F}(\mathbf{u}),\quad\,\forall \mathbf {u}\in\mathbb{R}^n. $$

By Lemma 2, \(D\mathcal{F}(\mathbf{u})\) is invertible. HenceFootnote 5 \(g^{T}D\mathcal {F}(\mathbf{u})\neq0\) and thus

$$\mathrm{rank}\big(f_g(\mathbf{u})\big)=\mathrm{rank}\big (g^TD\mathcal{F}(\mathbf{u})\big)=1,\quad \forall\mathbf{u}\in\mathbb{R}^n. $$

In particular, f g does not have critical points. Its inverse of the origin K g reads

$$K_g\stackrel{\mathrm{def}}{=}f_g^{-1}(0)=\{\mathbf {u}\in\mathbb{R}^n\mid g^T\mathcal{F}(\mathbf{u})=0\} . $$
(28)

By an extensionFootnote 6 of the constant rank theorem [4], the subset K g in (28), supposed nonempty, is a \(\mathcal{C}^{s-1}\) manifold of ℝn of dimension n−1. Hence \(\mathbb{L}^{n}(K_{g})=0\) (see e.g. [20, 31]). Using Proposition 1, f g is \(\mathcal{C}^{s-1}\)-continuous, so K g is closed.

The set \(K_{\mathcal{G}}\) in (9) also reads

$$K_{\mathcal{G}}=\bigcup_{g\in\mathcal{G}}K_g. $$

Using that \(\mathcal{G}\) is of finite cardinality, it follows that \(K_{\mathcal{G}}\) is closed in ℝn and that

$$\mathbb{L}^n\left(K_{\mathcal{G}}\right)=0. $$

The conclusion is clearly independent of the value of β>0. (II) Given \((i,j)\in\mathbb{I}_{n}\times \mathbb{I}_{n}\) (including i=j), define the subset K i,j ⊂ℝn as

$$K_{i,j}=\mathcal{F}_{i}^{-1}(\mathbf{u}_{j})=\big\{ \mathbf{u}\in\mathbb{R}^n\mid\mathcal{F} _{i}(\mathbf{u})=\mathbf{u}_{j}\big\}. $$
(29)

From Proposition 1, \(\mathcal{F}_{i}:\mathbb{R}^{n}\to\mathbb {R}\) is \(\mathcal{C}^{s-1}\) continuous, so K i,j is closed in ℝn. By Lemma 2, all rows of \(D\mathcal{F}(\mathbf{u})\in\mathbb{R}^{n\times n}\) are linearly independent, ∀u∈ℝn. Consequently, for any \(i\in\mathbb{I}_{n}\),

$$\mathrm{rank}\big(D\mathcal{F}_{i}(\mathbf{u})\big)=1,\quad \forall\mathbf{u}\in\mathbb{R}^n. $$

Using the same arguments as in (I), K i,j is a \(\mathcal{C}^{s-1}\) submanifold of ℝn of dimension n−1, hence

$$\mathbb{L}^n(K_{i,j})=0. $$

Noticing that \(K_{\mathcal{I}}\) in (10) is a finite union of (n−1)-dimensional submanifolds in ℝn like K i,j entails the result. The independence of these results from β>0 is obvious.

1.4 A.4 A Lemma Needed to Prove Proposition 2

Lamma 3

Let (A, B)∈ℝn×n×ℝn×n satisfy

Consider the n×n matrix \(M\stackrel{\mathrm{def}}{=}(A+B)^{-1}A\). Then all eigenvalues of M T M belong to (0,1].

Proof

Let λ be an eigenvalue of (A+B)−1 A and v∈ℝn∖{0} a right eigenvector corresponding to λ. Then

(30)
(31)

If λ=0 then (31) yields A v=0 which is impossible because A≻0, A T=A and v≠0. Hence

$$\lambda\neq0. $$
(32)

Furthermore, (31) yields

$$\lambda\, \mathbf{v}^TB\mathbf{v}=(1-\lambda)\,\mathbf {v}^TA\mathbf{v}. $$

Using that A≻0 and B⪰0, the last equation shows that

$$ \frac{1}{\lambda}-1=\frac{\mathbf{v}^TB\mathbf{v}}{\mathbf {v}^TA\mathbf{v}}\geq0. $$
(33)

Combining the latter inequality with (32) entails that

$$0<\lambda\leq1. $$
(34)

Hence all eigenvalues of M live in (0,1].

Using that A is diagonal with positive diagonal entries, we can write down

$$A+B=A^{\frac{1}{2}}\left(I+A^{-\frac {1}{2}}BA^{-\frac{1}{2}}\right)A^{\frac{1}{2}}. $$
(35)

Then the definition of M shows thatFootnote 7

(36)

Using (35), the expression in (30) is equivalent to

Combining the last result with (36) yields

Consequently, λ 2 is an eigenvalue of M T M corresponding to an eigenvector given by \((A^{\frac{1}{2}}\mathbf{v})\). Thus all eigenvalues of M T M belong to (0,1] as well. □

1.5 A.5 Proof of Proposition 2

Let us denote

as well as

$$M(\mathbf{u})=(A(\mathbf{u})+\beta B(\mathbf{u}))^{-1}A(\mathbf{u}). $$

Then \(D\mathcal{F}(\mathbf{u})=M(\mathbf{u})\). We have

Using Lemma 3 and Hypothesis 1, for any v∈ℝn, all eigenvalues of (M(v))T M(v) are in (0,1]. By the definition of the matrix 2-norm [33] one obtains

$$t\in[0,1]\quad\mbox{and}\quad\boldsymbol{\zeta}\in\mathbb {R}^n\quad\Rightarrow\quad\| M(\mathbf{u}+t\boldsymbol{\zeta} )\|_{2}\leq1. $$

Noticing that M(⋅) is a continuous mapping, the mean value theorem (see e.g. [4, 14]) shows that

$$\|\mathcal{F}(\mathbf{u}+\boldsymbol{\zeta})-\mathcal{F}(\mathbf {u})\|_2\leq \max_{0\leq t\leq1}\|M(\mathbf{u}+t\boldsymbol{\zeta})\|_2\| \boldsymbol{\zeta}\|_2\leq\|\boldsymbol{\zeta}\|_2. $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, M., Wen, YW. & Chan, R. Exact Histogram Specification for Digital Images Using a Variational Approach. J Math Imaging Vis 46, 309–325 (2013). https://doi.org/10.1007/s10851-012-0401-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0401-8

Keywords

Navigation