Skip to main content
Log in

Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively predict statistical and visual properties of images taken by a forthcoming higher resolution telescope from older images at lower resolution. This is done by performing a virtual super resolution using a family of scale invariant stochastic processes, namely compound Poisson cascades, and fractional integration. The procedure preserves the visual aspect as well as the statistical properties of the initial image. An augmentation of information is performed by locally adding random small scale details below the initial pixel size. This extrapolation procedure yields a potentially infinite number of magnified versions of an image. It allows for large magnification factors (virtually infinite) and is physically conservative: zooming out to the initial resolution yields the initial image back. The (virtually) super resolved images can be used to predict the quality of future observations as well as to develop and test compression or denoising techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacry, E., Muzy, J.: Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449–475 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnsley, M.: Fractal functions and interpolation. Constr. Approx. 2(1), 303–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  4. Barral, J., Mandelbrot, B.: Multiplicative products of cylindrical pulses. Probab. Theory Relat. Fields 124, 409–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Benzi, R., Biferale, L., Crisanti, A., Paladin, G., Vergassola, M., Vulpiani, A.: A random process for the construction of multiaffine fields. Physica D 65, 352–358 (1993)

    Article  MATH  Google Scholar 

  6. Benzi, R., Ciliberto, S., Tripicione, R., Baudet, C., Massaioli, F.: Extended self similarity in turbulent flows. Phys. Rev. E 48, R29–R32 (1993)

    Article  Google Scholar 

  7. Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Process. Appl. 117(3), 312–332 (2007)

    Article  MATH  Google Scholar 

  8. Carey, W., Chuang, D., Hemami, S.: Regularity-preserving image interpolation. Image Process. IEEE Trans. 8(9), 1293–1297 (1999). DOI:10.1109/83.784441

    Article  Google Scholar 

  9. Castaing, B., Dubrulle, B.: Fully developed turbulence: a unifying point of view. J. Phys. II France 5, 895–899 (1995)

    Article  Google Scholar 

  10. Castaing, B., Gagne, Y., Hopfinger, E.: Velocity probability density functions of high Reynolds number turbulence. Physica D 46, 177–200 (1990)

    Article  MATH  Google Scholar 

  11. Chainais, P.: Multidimensional infinitely divisible cascades. application to the modelling of intermittency in turbulence. Eur. J. Phys. B 51, 229–243 (2006)

    Article  Google Scholar 

  12. Chainais, P.: Infinitely divisible cascades to model the statistics of natural images. IEEE Trans. Pattern Mach. Intell. (2007). DOI:10.1109/TPAMI.2007.1113 (ISSN: 0162-8828)

    Google Scholar 

  13. Chainais, P., Riedi, R., Abry, P.: Scale invariant infinitely divisible cascades. In: Int. Symp. on Physics in Signal and Image Processing, Grenoble, France (2003)

  14. Chainais, P., Riedi, R., Abry, P.: On non scale invariant infinitely divisible cascades. IEEE Trans. Inf. Theory 51(3), 1063–1083 (2005)

    Article  MathSciNet  Google Scholar 

  15. Chainais, P., Riedi, R., Abry, P.: Warped infinitely divisible cascades: beyond scale invariance. Trait. Signal 22(1) (2005)

  16. Chang, S., Cvetkovic, Z., Vetterli, M.: Resolution enhancement of images using wavelet transform extrema extrapolation. In: Acoustics, Speech, and Signal Processing, 1995. ICASSP-95, 1995 International Conference on, vol. 4, pp. 2379–2382 (1995). DOI:10.1109/ICASSP.1995.479971

  17. Decoster, N., Roux, S., Arneodo, A.: A wavelet-based method for multifractal image analysis. II. Applications to synthetic multifractal rough surfaces. Eur. Phys. J. B 15, 739–764 (2000)

    Article  Google Scholar 

  18. Delouille, V., Chainais, P., Hochedez, J.F.: Quantifying and containing the curse of high resolution coronal imaging. Ann. Geophys. 26(10), 3169–3184 (2008)

    Article  Google Scholar 

  19. Ebert, D., Musgrave, F., Peachy, D., Perlin, K., Worley, S.: Texturing and Modeling: A Procedural Approach, 3rd edn. Morgan Kaufmann, San Mateo (2003)

    Google Scholar 

  20. Fattal, R.: Image upsampling via imposed edge statistics. In: SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, p. 95. ACM, New York (2007). DOI:10.1145/1275808.1276496

    Chapter  Google Scholar 

  21. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, New-York (1966)

    MATH  Google Scholar 

  22. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  23. Frisch, U.: Turbulence. The Legacy of A. Kolmogorov. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  24. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Computer Vision, 2009 IEEE 12th International Conference on, pp. 349–356 (2009). DOI:10.1109/ICCV.2009.5459271

  25. Grenander, U., Srivastava, A.: Probability models for clutter in natural images. IEEE Trans. Pattern Anal. Mach. Intell. 23(4), 424–429 (2001)

    Article  Google Scholar 

  26. Guofang, T., Zhang, C., Wu, J., Liu, X.: Remote sensing image processing using wavelet fractal interpolation. In: Proceedings of the International Conference on Communications, Circuits and Systems, vol. 2, p. 706 (2005). DOI:10.1109/ICCCAS.2005.1495209

  27. HaCohen, Y., Fattal, R., Lischinski, D.: Image upsampling via texture hallucination. In: Proceedings of IEEE Int. Conf. on Computational Photography (2010)

  28. Han, Z., Denney, T.J.: Incremental Fourier interpolation of 2-d fractional Brownian motion. Ind. Electron. IEEE Trans. 48(5), 920–925 (2001). DOI:10.1109/41.954556

    Article  Google Scholar 

  29. Hochedez, J.F., et al.: EUI, the ultraviolet imaging telescopes of solar orbiter. In: Proceedings of the 2nd Solar Orbiter Workshop, vol. 641. ESA-SP, Athens (2006)

    Google Scholar 

  30. Jaffard, S.: Multifractal formalism for functions, Part 1 & 2. SIAM J. Math. Anal. 28(4), 944–998 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jaffard, S.: Beyond Besov spaces Part 1: Distributions of wavelet coefficients. J. Fourier Anal. Appl. 10(3), 221–246 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jaffard, S.: Wavelet techniques in multifractal analysis. In: Lapidus, M., van Frankenhuijsen, M. (eds.) Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics, vol. 72(2), pp. 91–152. AMS, Providence (2004)

    Google Scholar 

  33. Kirshner, H., Porat, M.: On the role of exponential splines in image interpolation. Image Process., IEEE Trans. 18(10), 2198–2208 (2009). DOI:10.1109/TIP.2009.2025008

    Article  Google Scholar 

  34. Kœnig, E., Chainais, P.: Virtual resolution enhancement of scale invariant textured images using stochastic processes. In: Proceedings of IEEE-ICIP 2009, Cairo (2009)

  35. Kœnig, E., Chainais, P., Delouille, V., Hochedez, J.F.: Amélioration virtuelle de la résolution d’images du soleil par augmentation d’information invariante d’échelle. In: Proceedings of the 22nd Colloquium GRETSI, Dijon (2009)

  36. Lashermes, B., Jaffard, S., Abry, P.: Wavelet leaders based multifractal analysis. In: Proc. of Int. Conf. on Acoustics, Speech and Signal Proc. Philadelphia, USA (2005)

  37. Levy-Vehel, J., Legrand, P.: Hölderian regularity-based image interpolation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, vol. 3, pp. III–III (2006). DOI:10.1109/ICASSP.2006.1660788

  38. Li, X.: Image resolution enhancement via data-driven parametric models in the wavelet space. EURASIP J. Image Video Process. 2007, 41516 (2007),12 p. DOI:10.1155/2007/41516

    Google Scholar 

  39. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  40. Liu, Y., Fieguth, P.: Image resolution enhancement with hierarchical hidden fields. In: ICIAR ’09: Proceedings of the 6th International Conference on Image Analysis and Recognition, pp. 73–82. Springer, Berlin (2009). DOI:10.1007/978-3-642-02611-9_8

    Google Scholar 

  41. Mandelbrot, B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)

    Article  MATH  Google Scholar 

  42. Muzy, J., Bacry, E.: Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws. Phys. Rev. E 66, 056121 (2002)

    Article  Google Scholar 

  43. Muzy, J., Bacry, E., Arneodo, A.: Multifractal formalism for fractal signals: The structure function approach versus the wavelet transform modulus-maxima method. J. Stat. Phys. 70, 635–674 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  44. Olshausen, B., Field, D.: Emergence of simple-cell receptive properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  45. Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–71 (2000)

    Article  MATH  Google Scholar 

  46. Riedi, R.H.: Multifractal processes. Long-range dependence: theory and applications (2001)

  47. Schertzer, D., Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res. 92, 9693 (1987)

    Article  Google Scholar 

  48. Schmitt, F., Marsan, D.: Stochastic equations generating continuous multiplicative cascades. Eur. Phys. J. B 20, 3–6 (2001)

    Google Scholar 

  49. Srivastava, A., Lee, A., Simoncelli, E., Zhu, S.C.: On advances in statistical modeling of natural images. J. Math. Imaging Vis. 18, 17–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  50. Suetake, N., Sakano, M., Uchino, E.: Image super-resolution based on local self-similarity. Opt. Rev. 15, 26–30 (2008). DOI:10.1007/s10043-008-0005-0

    Article  Google Scholar 

  51. Thevenaz, P., Blu, T., Unser, M.: Interpolation revisited [medical images application]. Medical Imaging, IEEE Trans. 19(7), 739–758 (2000). DOI:10.1109/42.875199

    Article  Google Scholar 

  52. Turiel, A., Mato, G., Parga, N., Nadal, J.: Self-similarity properties of natural images resemble those of turbulent flows. Phys. Rev. Lett. 80(5), 1098–1101 (1998)

    Article  Google Scholar 

  53. Unser, M., Aldroubi, A., Eden, M.: Enlargement or reduction of digital images with minimum loss of information. IEEE Trans. Image Process. 4(3), 247–258 (1995)

    Article  Google Scholar 

  54. Unser, M., Zerubia, J.: A generalized sampling theory without band-limiting constraints. IEEE Trans. Circ. Syst. II 45(8), 959–969 (1998)

    Article  MATH  Google Scholar 

  55. Wainwright, M., Simoncelli, E.: Scale mixtures of Gaussian and the statistics of natural images. Adv. Neural Inf. Process. Syst. 12, 855–861 (2000) NIPS’99

    Google Scholar 

  56. Wainwright, M., Simoncelli, E., Willsky, A.: Random cascades on wavelet trees and their use in analyzing and modeling natural images. Appl. Comput. Harmon. Anal. 11, 89–123 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Wendt, H., Roux, S.G., Abry, P., Jaffard, S.: Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process. 89, 1100–1114 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chainais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chainais, P., Kœnig, É., Delouille, V. et al. Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes. J Math Imaging Vis 39, 28–44 (2011). https://doi.org/10.1007/s10851-010-0222-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0222-6

Keywords

Navigation