Skip to main content
Log in

Syntheses and complexing ability of α-d-gluco- and α-d-xylofuranoside-based lariat ethers

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Chiral monoaza-15-crown-5 lariat ethers attached to a 1,2-O-isopropylidene-α-d-glucofuranoside unit (1013), monoaza-16-crown-5 lariat ethers fused to 1,2-O-isopropylidene-α-d-glucofuranoside- (18) and to 1,2-O-isopropylidene-α-d-xylofuranoside units (23 and 24) have been synthesized. The alkali metal- and ammonium picrate extracting ability of these macrocycles was investigated in dichloromethane–water system. In general, the 15-membered macrocycles (1013) showed, for almost all cations, a more considerable extracting ability, than the 16-membered lariat ethers (18, 23 and 24). Plasticized PVC membrane electrodes (ISEs) were prepared from the α-d-glucofuranoside-based triphenylmetyl (trityl) ether derivative (18), and its potentiometric selectivities and complex formation constants were determined with the segmented sandwich membrane method. Furthermore, the binding affinities of ionophores to different metal ions were also measured by competitive ESI–MS experiments. One of the 1,2-O-isopropylidene-α-d-glucofuranoside-based lariat ethers (13) exhibited a high selectivity for silver ion (Ag+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Weber, E.: Crown ethers—complexes and selectivity. In: Patai, S., Rappoport, Z. (eds.) Crown Ethers and Analogs, Chapter 4, pp. 305–319. Wiley, New York (1989). (and references cited therein)

    Chapter  Google Scholar 

  2. Izatt, R.M., Pawlak, K., Bradshaw, J.S., Bruening, R.L.: Thermodynamic and kinetic data for macrocycle interaction with cations, anions, and neutral molecules. Chem. Rev. 95, 2529–2586 (1995)

    Article  CAS  Google Scholar 

  3. Gokel, G.W., Schall, O.F.: Lariat ethers. In: Gogel, G.W. (ed.) Comprehensive Supramolecular Chemistry, pp. 97–152. Pergamon, New York (1996)

    Google Scholar 

  4. Davison, R.B., Izatt, R.M., Christensen, J.J., Schultz, R.A., Dishong, D.M., Gokel, G.W.: Stability-constants, enthalpies, and entropies for metal ion lariat ether interactions in methanol solution. J. Org. Chem. 49, 5080–5084 (1984)

    Article  Google Scholar 

  5. Adamic, R.J., Lloyd, B.A., Eyring, E.M., Petrucci, S., Bartsch, R.A., Pugia, M.J., Knudsen, B.E., Liu, Y., Desai, D.H.: Sodium-ion complexation by ionizable crown ethers in methanol water solvents—a thermodynamic and kinetic evaluation of side-arm interaction. J. Phys. Chem. 90, 6571–6576 (1986)

    Article  CAS  Google Scholar 

  6. Bredikhin, A.A., Gubaidullin, A., Bredikhina, Z.A., Fayzullin, R.: Crystallographic evidence of side-arm lariat effect in the series of chiral ortho- and para-methoxyphenoxymethyl-15-crown-5 complexes with sodium perchlorate. J. Mol. Struct. 1032, 176–184 (2013)

    Article  CAS  Google Scholar 

  7. Bratton, L.D., Strzelbicka, B., Bartsch, R.A.: Synthesis of N-pivot lariat ethers and their metal ion complexation behavior. ARKIVOC 12, 80–88 (2003)

    Google Scholar 

  8. Stoddart, J.F.: Chiral crown ethers. In: Eliel, E.L., Wielen, S.H. (eds.) Topics in Stereochemistry, vol. 17, pp. 207–288. Wiley, New York (1988)

    Chapter  Google Scholar 

  9. Miethchen, R., Fehring, V.: Carbohydrate-based crown ethers containing 1,4-linked d-glucopyranose moieties. Synthesis 94–98 (1998)

  10. Bakó, P., Czinege, E., Bakó, T., Czugler, M., Tőke, L.: Asymmetric C–C bond forming reactions with chiral crown catalysts derived from d-glucose and d-galactose. Tetrahedron 10, 4539–4551 (1999). (and references cited therein)

    Article  Google Scholar 

  11. Itoh, T., Shirakami, S.: Synthesis of chiral azacrown ethers derived from alpha-d-glucose and their catalytic properties on the asymmetric Michael addition. Heterocycles 55, 37–43 (2001)

    Article  CAS  Google Scholar 

  12. Stoddart, J.F.: Synthetic chiral receptor molecules from natural products. In: Izatt, R.M., Christensen, J.J. (eds.) Progress in Macrocyclic Chemistry, vol. 2, pp. 173–250. Wiley-Interscience, New York (1981)

    Google Scholar 

  13. Gruza, M.M., Pokrop, A., Jurczak, J.: Synthesis and determination of alkali metal binding selectivities of chiral macrocyclic bissulfonamides derived from d-mannitol and l-threitol. Pol. J. Chem. 79, 223–230 (2005)

    CAS  Google Scholar 

  14. Bakó, P., Makó, A., Keglevich, G., Menyhárt, D.K., Sefcsik, T., Fekete, J.: Alkali metal- and ammonium picrate extraction and complex forming capabilities of d-glucose and d-mannose-based lariat ethers. J. Incl. Phenom. 55, 295–302 (2006)

    Article  Google Scholar 

  15. Jarosz, S., Listkowski, A.: Sugar derived crown ethers and their analogs: synthesis and properties. Curr. Org. Chem. 10, 643–662 (2006)

    Article  CAS  Google Scholar 

  16. Bakó, P., Keglevich, G., Rapi, Z.: Asymmetric phase transfer reactions catalyzed by chiral crown ethers derived from monosaccharides. Lett. Org. Chem. 7, 645–656 (2010)

    Article  Google Scholar 

  17. Bakó, P., Rapi, Z., Keglevich, G., Szabó, T., Sóti, P.L., Vígh, T., Grűn, A., Holczbauer, T.: Asymmetric C–C bond formation via Darzens condensation and Michael addition using monosaccharide-based chiral crown ethers. Tetrahedron Lett. 52, 1473–1476 (2011)

    Article  Google Scholar 

  18. Rapi, Z., Bakó, P., Keglevich, G., Szöllősy, Á., Drahos, L., Hegedűs, L.: Synthesis of ribo-hexopyranoside- and altrose-based azacrown ethers and their application in an asymmetric Michael addition. Carbohydr. Res. 365, 61–68 (2013)

    Article  CAS  Google Scholar 

  19. Rapi, Z., Démuth, B., Keglevich, G., Grün, A., Drahos, L., Sóti, P.L., Bakó, P.: Enantioselective Michael addition of malonates to aromatic nitroalkenes catalyzed by monosaccharide-based chiral crown ethers. Tetrahedron Asymmetry 25, 141–147 (2014)

    Article  CAS  Google Scholar 

  20. Bakó, T., Bakó, P., Szöllősy, Á., Czugler, M., Keglevich, G., Tőke, L.: Enantioselective Michael reaction of 2-nitropropane with substituted chalcones catalysed by chiral azacrown ethers derived from alpha-d-glucose. Tetrahedron Asymmetry 13, 203–209 (2002)

    Article  Google Scholar 

  21. Bakó, P., Bakó, T., Mészáros, A., Keglevich, G., Szöllősy, Á., Bodor, S., Makó, A., Tőke, L.: Phase transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from d-glucose and d-mannose. Synlett 643–646 (2004)

  22. Marchand, A.P., McKim, A.S., Kumar, K.A.: Synthesis and alkali metal picrate extraction capabilities of novel, cage-functionalized diazacrown ethers. Effects of host preorganization on avidity and selectivity toward alkali metal picrates in solution. Tetrahedron 54, 13421–13426 (1998)

    Article  CAS  Google Scholar 

  23. Kumar, S., Kaur, N., Singh, H.: Synthetic ionophores. 14. Effect of pyridine and thioether ligating units on Ag+ selectivity in 18-membered diamide-diester macrocycles. Tetrahedron 52, 13483–13492 (1996)

    Article  CAS  Google Scholar 

  24. Di Marco, V.B., Bombi, G.G.: Electrospray mass spectrometry (ESI-MS) in the study of metal-ligand solution equilibria. Mass Spectrom. Rev. 25, 347–349 (2006)

    Article  Google Scholar 

  25. Daniel, J.M., Friess, S.D., Rajagopalan, S., Wendt, S., Zenobi, R.: Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 216, 1–27 (2002)

    Article  CAS  Google Scholar 

  26. Veenstra, T.D.: Electrospray ionization mass spectrometry in the study of biomolecular non-covalent interactions. Biophys. Chem. 79, 63–79 (1999)

    Article  CAS  Google Scholar 

  27. Brodbelt, J.S.: Probing molecular recognition by mass spectrometry. Int. J. Mass Spectrom. 200, 57–69 (2000)

    Article  CAS  Google Scholar 

  28. Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)

    Article  CAS  Google Scholar 

  29. Wang, K., Gokel, G.W.: The use of mass spectrometry to assess complexation phenomena in receptor compounds. Pure Appl. Chem. 68, 1267–1272 (1996)

    Google Scholar 

  30. Leize, E., Jaffrezic, A., Van Dorsselaer, A.: Correlation between solvation energies and electrospray mass spectrometric response factors. Study by electrospray mass spectrometry of supramolecular complexes in thermodynamic equilibrium in solution. J. Mass Spectrom. 31, 537–544 (1996)

    Article  CAS  Google Scholar 

  31. Blair, S.M., Kempen, E.C., Brodbelt, J.S.: Determination of binding selectivities in host-guest complexation by electrospray/quadrupole ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 1049–1059 (1998)

    Article  CAS  Google Scholar 

  32. Rosu, F., De Pauw, E., Gabelica, V.: Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie 90, 1074–1087 (2008)

    Article  CAS  Google Scholar 

  33. Rosu, F., Gabelica, V., Houssier, C., De Pauw, E.: Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res. 30, e82 (2002)

    Article  Google Scholar 

  34. Wang, W.J., Kitova, E.N., Klassen, J.S.: Influence of solution and gas phase processes on protein-carbohydrate binding affinities determined by nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 75, 4945–4955 (2003)

    Article  CAS  Google Scholar 

  35. Révész, Á., Schröder, D., Svec, J., Wimmerova, M., Sindelar, V.: Anion binding by bambus[6]uril probed in the gas phase and in solution. J. Phys. Chem. A 115, 11378–11386 (2011)

    Article  Google Scholar 

  36. Kapeller, D.C., Hammerschmidt, F.: Novel formal synthesis of stereospecifically C-6 deuterated d-glucose employing configurationally stable alkoxymethyllithiums. Tetrahedron 66, 591–598 (2010)

    Article  CAS  Google Scholar 

  37. Bishop, C.T.: Synthesis of 3,5-di-O-methyl-d-glucose. Can. J. Chem. 35, 61–64 (1957)

    CAS  Google Scholar 

  38. Moravcová, J., Čapková, J., Staněk, J.: One-pot synthesis of 1,2-O-isopropylidene-α-d-xylofuranose. Carbohydr. Res. 263, 61–66 (1994)

    Article  Google Scholar 

  39. Kimura, K., Maeda, T., Shono, T.: Extraction of alkali-metal picrates with poly(crown ether) and bis(crown ether). Talanta 26, 945–949 (1979)

    Article  CAS  Google Scholar 

  40. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., Robins, R.K.: Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 29, 163–172 (1989)

    Article  CAS  Google Scholar 

  41. Csizmadia, F., Tsantili-Kakoulidou, A., Panderi, I., Darvas, F.: Prediction of distribution coefficient from structure. 1. Estimation method. J. Pharm. Sci. 86, 865–871 (1997)

    Article  CAS  Google Scholar 

  42. Mi, Y., Bakker, E.: Determination of complex formation constants of lipophilic neutral ionophores in solvent polymeric membranes with segmented sandwich membranes. Anal. Chem. 71, 5279–5287 (1999)

    Article  CAS  Google Scholar 

  43. Czirok, J.B., Jagerszki, G., Toth, K., Revesz, A., Drahos, L., Bitter, I.: Click synthesis of triazole-linked calix[4]arene ionophores. Potentiometric and ESI-MS screening of ion-selectivity. J. Incl. Phenom. 78(1–4), 207–215 (2014)

    Article  CAS  Google Scholar 

  44. Schmidt, O.T.: Isopropylidene derivatives. In: Whistler, R.L., Wolfrom, M.L. (eds.) Methods in Carbohydrate Chemistry, vol. 2, pp. 318–325. Academic Press Inc, New York and London (1963)

    Google Scholar 

  45. Xue, X.C., Yin, Z.J., Meng, X.B., Li, Z.J.: A carbohydrate-based approach for the total synthesis of (−)-dinemasone B, (+)-4a-epi-dinemasone B, (−)-7-epi-dinemasone B, and (+)-4a,7-di-epi-dinemasone B. J. Org. Chem. 78, 9354–9365 (2013)

    Article  CAS  Google Scholar 

  46. Szeja, W.: Alkylation of carbohydrates in a catalytic 2-phase system. Pol. J. Chem. 55, 1503–1509 (1981)

    CAS  Google Scholar 

  47. Laidler, D.A., Stoddart, J.F.: Synthesis of crown ethers and analogues. In: Patai, S. (ed.) The Chemistry of Ethers, Crown Ethers, Hydroxyl groups and Their Sulfur Analogues, Part 1, pp. 3–9. Wiley, New York (1980)

    Google Scholar 

  48. Williams, S.M., Brodbelt, J.S., Huang, Z., Lai, H., Marchand, A.P.: Complexation of silver and co-recovered metals with novel aza-crown ether macrocycles by electrospray ionization mass spectrometry. Analyst 128, 1352–1359 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Hungarian Scientific Research Found (OTKA PD No. 112166) and the New Széchenyi Development Plan (TÁMOP-4.2.1/B-09/1/KMR-2010-0002). L.H. gratefully acknowledges the support of the Bolyai János Fellowship. The support of the Lendület program of the Hungarian Academy of Sciences (LP2013-63/2013) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bakó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapi, Z., Ozohanics, O., Tóth, G. et al. Syntheses and complexing ability of α-d-gluco- and α-d-xylofuranoside-based lariat ethers. J Incl Phenom Macrocycl Chem 85, 19–32 (2016). https://doi.org/10.1007/s10847-016-0601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0601-8

Keywords

Navigation