Skip to main content
Log in

Molecular dynamics of nor-Seco-cucurbit[10]uril complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were carried out to investigate the structure and dynamics of the 1:1 and 1:2 inclusion complexes formed by nor-Seco-cucurbit[10]uril (ns-CB[10]) with 1-adamantanmethylammonium in water. Two and three orientational isomers were considered for 1:1 and 1:2 complexes, respectively. These isomers are identified by the orientation/position of the ammonium group in the guest relative to the flexible and rigid carbonyl portals of the ns-CB[10] host. Results demonstrate that the inclusion of one guest molecule within one cavity in the host induces similar conformational changes in both the occupied and empty cavities. The average structure for each complex shows that the guest molecule is shifted closer to the side that lacks the CH2-bridge in the host, and that the ammonium group of the guest interacts with the oxygens of the host’s portals via ion–dipole interactions with the hydrophobic part of the guest molecule resides in the cavity of the host. Furthermore, the 1:1 complexes are found to interconvert over the time of the simulation. This observation is not found for 1:2 complexes. Finally, MM–PBSA calculations show that 1:2 complexes are significantly more stable than their 1:1 counterparts while two orientations of the 1:2 complexes are more stable than the third.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)

    Article  CAS  Google Scholar 

  2. Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)

    Article  CAS  Google Scholar 

  3. Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)

    Article  CAS  Google Scholar 

  4. Ko, Y.H., Hwang, I., Lee, D.W., Kim, K.: Ultrastable host-guest complexes and their applications. Isr. J. Chem. 51, 506–514 (2011)

    Article  CAS  Google Scholar 

  5. Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host-guest complexation. Isr. J. Chem. 51, 559–577 (2011)

    Article  CAS  Google Scholar 

  6. Florea, M., Nau, W.M.: Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew. Chem. Int. Ed. 50, 9338–9342 (2011)

    Article  CAS  Google Scholar 

  7. Vinciguerra, B., Cao, L.P., Cannon, J.R., Zavalij, P.Y., Fenselau, C., Isaacs, L.: Synthesis and self-assembly processes of monofunctionalized cucurbit[7]uril. J. Am. Chem. Soc. 134, 13133–13140 (2012)

    Article  CAS  Google Scholar 

  8. Isaacs, L., Park, S.K., Liu, S.M., Ko, Y.H., Selvapalam, N., Kim, Y., Kim, H., Zavalij, P.Y., Kim, G.H., Lee, H.S., Kim, K.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005)

    Article  CAS  Google Scholar 

  9. Huang, W.H., Liu, S.M., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006)

    Article  CAS  Google Scholar 

  10. Ma, D., Zavalij, P.Y., Isaacs, L.: Acyclic cucurbit[n]uril congeners are high affinity hosts. J. Org. Chem. 75, 4786–4795 (2010)

    Article  CAS  Google Scholar 

  11. Lewin, V., Rivollier, J., Coudert, S., Buisson, D.A., Baumann, D., Rousseau, B., Legrand, F.X., Kourilova, H., Berthault, P., Dognon, J.P., Heck, M.P., Huber, G.: Synthesis of cucurbit[6]uril derivatives and insights into their solubility in water. Eur. J. Org. Chem. 2013, 3857–3865 (2013)

    Article  CAS  Google Scholar 

  12. Nally, R., Isaacs, L.: Toward supramolecular polymers incorporating double cavity cucurbituril hosts. Tetrahedron 65, 7249–7258 (2009)

    Article  CAS  Google Scholar 

  13. Huang, W.-H., Zavalij, P.Y., Isaacs, L.: Nor-seco-cucurbit[n]uril molecular containers. Polym. Prepr. 51, 154–155 (2010)

    CAS  Google Scholar 

  14. Lemaur, V., Carroy, G., Poussigue, F., Chirot, F., De Winter, J., Isaacs, L., Dugourd, P., Cornil, J., Gerbaux, P.: Homotropic allosterism: in-depth structural analysis of the gas-phase noncovalent complexes associating a double-cavity cucurbit[n]uril-type host and size-selected protonated amino aompounds. ChemPlusChem 78, 959–969 (2013)

    Article  CAS  Google Scholar 

  15. El-Barghouthi, M.I., Assaf, K.I., Rawashdeh, A.M.M.: Molecular dynamics of methyl viologen-cucurbit[n]uril complexes in aqueous solution. J. Chem. Theory Comput. 6, 984–992 (2010)

    Article  CAS  Google Scholar 

  16. Rawashdeh, A.M.M., El-Barghouthi, M.I., Assaf, K.I., Al-Gharabli, S.I.: Complexation of N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation and its neutral analogue by cucurbit[7]uril and beta-cyclodextrin: a computational study. J. Incl. Phenom. Macrocycl. Chem. 64, 357–365 (2009)

    Article  CAS  Google Scholar 

  17. Gilson, M.K.: Stress analysis at the molecular level: a forced cucurbituril-guest dissociation Pathway. J. Chem. Theory Comput. 6, 637–646 (2010)

    Article  CAS  Google Scholar 

  18. Case, D.A., Darden, T.A., Cheatham, T.E., Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Walker, R.C., Zhang, W., Merz, K.M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K.F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S.R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D.R., Mathews, D.H., Seetin, M.G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.A.: AMBER 11, University of California, San Francisco (2010)

  19. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  20. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.: Erratum. J. Comput. Chem. 26, 114 (2005)

    Article  CAS  Google Scholar 

  21. Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000)

    Article  CAS  Google Scholar 

  22. Jorgensen, W., Chanrasekhar, J., Madura, J., Klein, M.L.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  23. Darden, T., York, D., Pederson, L.: Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)

    Article  CAS  Google Scholar 

  24. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  25. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  26. Honig, B., Nicholls, A.: Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995)

    Article  CAS  Google Scholar 

  27. Jayaram, B., Sprous, D., Beveridge, D.L.: Solvation free energy of biomacromolecules: parameters for a modified generalized born model consistent with the amber force field. J. Phys. Chem. B 102, 9571–9576 (1998)

    Article  CAS  Google Scholar 

  28. Sitkoff, D., Sharp, K.A., Honig, B.: Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988 (1994)

    Article  CAS  Google Scholar 

  29. Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A.: Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J. Am. Chem. Soc. 120, 9401–9409 (1998)

    Article  CAS  Google Scholar 

  30. Massova, I., Kollman, P.A.: Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121, 8133–8143 (1999)

    Article  CAS  Google Scholar 

  31. Wu, Y., Cao, Z., Yi, H., Jiang, D., Mao, X., Liu, H., Li, W.: Simulation of the interaction between ScyTx and small conductance calcium-activated potassium channel by docking and MM-PBSA. Biophys. J. 87, 105–112 (2004)

    Article  CAS  Google Scholar 

  32. Sanner, M.F., Olson, A.J., Spehner, J.C.: Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996)

    Article  CAS  Google Scholar 

  33. Hou, T., Guo, S., Xu, X.: Predictions of binding of a diverse set of ligands to gelatinase-A by a combination of molecular dynamics and continuum solvent models. J. Phys. Chem. B 106, 5527–5535 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Hashemite University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa I. El-Barghouthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Barghouthi, M.I., Abdel-Halim, H.M., Haj-Ibrahim, F.J. et al. Molecular dynamics of nor-Seco-cucurbit[10]uril complexes. J Incl Phenom Macrocycl Chem 82, 323–333 (2015). https://doi.org/10.1007/s10847-015-0488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0488-9

Keywords

Navigation