Skip to main content
Log in

Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-β-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The aim of the present work was to investigate the interaction between bile salts present in the intestine of man, dog and rat with the negatively charged cyclodextrin (CD), sulfobutylether-β-cyclodextrin (SBEβCD). The interactions between bile salts and CDs are of importance for the release of CD-complexed drugs upon oral administration. This makes a good understanding of this particular interaction important for rational drug formulation. SBEβCD is a modified CD, which has attracted particular interest in formulation science. It is unique in the sense that it carries approximately seven negatively charged side chains, which can potentially interact electrostatically with the guest molecule. Bile salts are negatively charged at physiological pH, and the concomitant repulsion from SBEβCD could potentially reduce their affinity for this CD and hence their ability to expel drugs delivered as SBEβCD complexes. However, this study has demonstrated that the interaction, between a bile salts and SBEβCD is only slightly weaker than the corresponding interactions with natural βCD. Significant differences between the thermodynamics of bile salt complexes with respectively HPβCD and SBEβCD were found, when comparing the same degree of substitution. This underscores the importance of the substituents on the interactions of modified CDs with bile salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szejtli, J.: Cyclodextrin Technology. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  2. Szejtli, J.: Chemistry, physical and biological properties of cyclodextrins. In: Szejtli, J., Osa, T. (eds.) Cyclodextrins, pp. 189–204. Elsevier Science Ltd, Oxford (1996)

    Google Scholar 

  3. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem. Rev. 98, 1875–1917 (1998)

    Article  CAS  Google Scholar 

  4. Dodziuk, H.: Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications. Wiley, Weinheim (2006)

    Book  Google Scholar 

  5. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  6. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  7. Maas, J., Kamm, W.H.G.: An integrated early formulation strategy—from hit evaluation to preclinical candidate profiling. Eur. J. Pharm. Sci. 66, 1–10 (2007)

    Google Scholar 

  8. Neervannan, S.: Preclinical formulation for discovery and toxicology: physicochemical challenges. Expert Opin. Drug Metab. Toxicol. 2, 715–731 (2006)

    Article  CAS  Google Scholar 

  9. Strickley, R.G.: Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21, 201–230 (2004)

    Article  CAS  Google Scholar 

  10. Loftsson, T., Brewster, M.E.: Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J. Pharm. Sci. 101, 3019–3032 (2012)

    Article  CAS  Google Scholar 

  11. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Disc. 3, 1023–1035 (2004)

    Article  CAS  Google Scholar 

  12. Desiderio, C., Fanali, S.: Use of negative charged sulfobutyl ether-β-cyclodextrin for enantiomeric separation by capillary electrophoresis. J. Chromatogr. A 716, 183–196 (1995)

    Article  CAS  Google Scholar 

  13. Mikus, P., Kanlansky, D., Fanali, S.: Separation of multicomponent mixtures of 2,4-dinitrophenyl labelled amino acids and their enantiomers by capillary zone electrophoresis. Electrophoresis 22, 470–477 (2001)

    Article  CAS  Google Scholar 

  14. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  15. Loftsson, T., Brewster, M.E., Masson, M.: Role of cyclodextrins in improving oral drug delivery. Am. J. Drug Deliv. 2, 175–261 (2004)

    Article  Google Scholar 

  16. Liu, L., Guo, Q.-X.: The driving force in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002)

    Article  CAS  Google Scholar 

  17. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (2002)

    Article  Google Scholar 

  18. Schneider, H.J., Yatsimirsky, A.K.: Selectivity in supramolecular host-guest complexes. Chem. Soc. Rev. 37, 263–277 (2008)

    Article  CAS  Google Scholar 

  19. Nagase, Y., Hirata, M., Wada, K., Arima, H., Hirayama, F., Irie, T., Kikuchi, M., Uekama, K.: Improvement of some pharmaceutical properties of DY-9760e by sulfobutyl ether β-cyclodextrin. Int. J. Pharm. 229, 163–172 (2001)

    Article  CAS  Google Scholar 

  20. Savolainen, J., Järvinen, K., Matilainen, L., Järvinen, T.: Improved dissolution and bioavailability of phenytoin by sulfobutylether-β-cyclodextrin ((SBE)7m-β-CD)) and hydroxypropyl-β-cycloextrin (HP-β-CD) complexation. Int. J. Pharm. 165, 69–78 (1998)

    Article  CAS  Google Scholar 

  21. Järvinen, T., Järvinen, K., Schwarting, N., Stella, V.J.: β-Cyclodextrin derivatives, SBE4-β-CD and HP-β-CD, increase the oral bioavailability of cinnarizine in beagle dogs. J. Pharm. Sci. 84, 295–299 (1995)

    Article  Google Scholar 

  22. Larsen, K.L., Aachmann, F.L., Wimmer, R., Stella, V.J., Kjølner, U.M.: Phase solubility and structure of the inclusion complexes of prednisolone and 6α-methyl prednisolone with various cyclodextrins. J. Pharm. Sci. 94, 507–515 (2005)

    Article  CAS  Google Scholar 

  23. Rajendrakumar, K., Madhusudan, S., Pralhad, T.: Cyclodextrin complexes of valdecoxib: properties and anti-inflammatory activity in rats. Eur. J. Pharm. Biopharm. 60, 39–46 (2005)

    Article  CAS  Google Scholar 

  24. Zia, V., Rajewski, R.A., Stella, V.J.: Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-β-CD to HP-β-CD. J. Pharm. Sci. 18, 667–673 (2001)

    CAS  Google Scholar 

  25. Johnson, M.D., Hoesterey, B.L., Anderson, B.D.: Solubilization of a tripeptide HIV protease inhibitor using a combination of ionization and complexation with chemically modified cyclodextrins. J. Pharm. Sci. 83, 1142–1146 (1994)

    Article  CAS  Google Scholar 

  26. Másson, M., Loftsson, T., Jónsdóttir, S., Fridriksdóttir, H., Petersen, D.S.: Stabilisation of ionic drugs through complexation with non-ionic and ionic cyclodextrins. Int. J. Pharm. 164, 45–55 (1998)

    Article  Google Scholar 

  27. Okimoto, K., Rajewski, R.A., Uekama, K., Jona, J.A., Stella, V.J.: The interaction of charged and uncharged drugs with neutral (HP-β-CD) and anionically charged (SBE7-β-CD) β-cyclodextrins. Pharm. Res. 13, 256–264 (1996)

    Article  CAS  Google Scholar 

  28. Zia, V., Rajewski, R.A., Bornancini, E.R., Luna, E.A., Stella, V.J.: Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether β-cyclodextrins with steroids. J. Pharm. Sci. 86, 220–224 (1997)

    Article  CAS  Google Scholar 

  29. Arima, H., Yunomae, K., Miyake, K., Irie, T., Hirayama, F., Uekama, K.: Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats. J. Pharm. Sci. 90, 690–701 (2001)

    Article  CAS  Google Scholar 

  30. Brewster, M.E., Vandecruys, R., Peeters, J., Neeskens, P., Verreck, G., Loftsson, T.: Comparative interaction of 2-hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur. J. Pharm. Sci. 34, 94–103 (2008)

    Article  CAS  Google Scholar 

  31. Ono, N., Hirayama, F., Arima, H., Uekama, K., Rytting, J.H.: Model analysis for oral absorption of a drug/cyclodextrin complex involving competitive inclusion complexes. J. Incl. Phenom. Macrocycl. Chem. 44, 93–96 (2003)

    Article  Google Scholar 

  32. Miyajima, K., Yokoi, M., Komatsu, H., Nakagaki, M.: Interaction of β-cyclodextrin with bile salts in aqueous solutions. Chem. Pharm. Bull. 34, 1395–1398 (1986)

    Article  CAS  Google Scholar 

  33. Tan, X., Lindenbaum, S.: Studies on complexation between β-cyclodextrin and bile salts. Int. J. Pharm. 74, 127–135 (1991)

    Article  CAS  Google Scholar 

  34. Cabrer, P.R., Alvarez-Parrilla, E., Al-Soufi, W., Meijide, F., Núñez, E.R., Tato, J.V.: Complexation of bile salts by natural cyclodextrins. Supramol. Chem. 15, 33–43 (2003)

    Article  Google Scholar 

  35. Mucci, A., Vandelli, M.A., Salvioli, G., Malmusi, L., Forni, F., Schenetti, L.: Complexation of bile salts with 2-hydroxypropyl-β-cyclodextrin: a 13C-NMR study. Supramol. Chem. 7, 125–127 (1996)

    Article  CAS  Google Scholar 

  36. Cabrer, P.R., Alvarez-Parrilla, E., Meijide, F., Seijas, J.A., Núñez, E.R., Tato, J.V.: Complexation of sodium cholate and sodium deoxycholate by β-cyclodextrin and derivatives. Langmuir 15, 5489–5495 (1999)

    Article  Google Scholar 

  37. Mucci, A., Schenetti, L., Salvioli, G., Ventura, P., Vandelli, M.A., Forni, F.: The interaction of biliar acids with 2-hydroxypropyl-β-cyclodextrin in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 26, 233–241 (1996)

    Article  CAS  Google Scholar 

  38. Ollila, F., Pentikäinen, O.T., Forss, S., Johnson, M.S., Slotte, J.P.: Characterization of bile salt/cyclodextrin interactions using isothermal titration calorimetry. Langmuir 17, 7107–7111 (2001)

    Article  CAS  Google Scholar 

  39. Liu, Y., Yang, Y.-W., Cao, R., Song, S.-H., Zhang, H.-Y., Wang, L.-H.: Thermodynamic origin of molecular selective binding of bile salts by animated β-cyclodextrins. J. Phys. Chem. B 107, 14130–14139 (2003)

    Article  CAS  Google Scholar 

  40. Cooper, A., Nutley, M.A., Camilleri, P.: Microcalorimetry of chiral surfactant—cyclodextrin interactions. Anal. Chem. 70, 5024–5028 (1998)

    Article  CAS  Google Scholar 

  41. Holm, R., Shi, W., Hartvig, R.A., Askjær, S., Madsen, J.C., Westh, P.: Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and β-cyclodextrins. Phys. Chem. Chem. Phys. 11, 5070–5078 (2009)

    Article  CAS  Google Scholar 

  42. Holm, R., Nicolajsen, H.V., Hartvig, R.A., Westh, P., Østergaard, J.: Complexation of tauro- and glyco-conjugated bile salts with three neutral β-cyclodextrins studied by affinity capillary electrophoresis. Electrophoresis 28, 3745–3752 (2007)

    Article  CAS  Google Scholar 

  43. Holm, R., Hartvig, R.A., Nicolajsen, H.V., Westh, P., Østergaard, J.: Characterization of the complexation of tauro- and glyco-conjugated bile salts with γ-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin using affinity capillary electrophoresis. J. Incl. Phenom. Macrocycl. Chem. 61, 161–169 (2008)

    Article  CAS  Google Scholar 

  44. Østergaard, J., Jensen, H., Holm, R.: Use of correction factors in mobility shift affinity capillary electrophoresis for weak analyte—ligand interactions. J. Sep. Sci. 32, 1712–1721 (2009)

    Article  Google Scholar 

  45. Østergaard, J., Jensen, H., Holm, R.: Affinity capillary electrophoresis method for investigation of bile salt complexation with negatively charged sulfobutyl ether-β-cyclodextrin. J. Sep. Sci. 35, 2764–2772 (2012)

    Google Scholar 

  46. Vespalec, R., Bocek, P.: Calculation of stability constants for the chiral selector–enantiomer interactions from electrophoretic mobilities. J. Chromatogr. A 875, 431–445 (2000)

    Article  CAS  Google Scholar 

  47. Uselova-Vcelakova, K., Zuskova, I., Gas, B.: Stability constants of amino acids, peptides, proteins, and other biomolecules determined by CE and related methods: recapitulation of published data. Electrophoresis 28, 2134–2152 (2007)

    Article  Google Scholar 

  48. Ross, P.D., Rekharsky, M.V.: Thermodynamics of hydrogen bond and hydrophobic interactions in cyclodextrin complexes. Biophys. J. 71, 2144–2154 (1996)

    Article  CAS  Google Scholar 

  49. Olvera, A., Perez-Casas, S., Costas, M.: Heat capacity contributions to the formation of inclusion complexes. J. Phys. Chem. B 111, 11497–11505 (2007)

    Article  CAS  Google Scholar 

  50. Schönbeck, C., Holm, R., Westh, P.: Higher order inclusion complexes and secondary interactions studied by global analysis of calorimetric titrations. Anal. Chem. 84, 2305–2312 (2012)

    Article  Google Scholar 

  51. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  Google Scholar 

  52. MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  CAS  Google Scholar 

  53. Schönbeck, C., Holm, R., Westh, P., Peters, G.: Do 2-hydroxypropyl substituents extend the hydrophobic cavity of β-cyclodextrin? J. Incl. Phenom. Macrocycl. Chem. (submitted) (2013)

  54. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  55. Bowser, M.T., Chen, D.D.Y.: Higher order equilibria and their effect on analyte migration behavior in capillary electrophoresis. Anal. Chem. 70, 3261–3270 (1998)

    Article  CAS  Google Scholar 

  56. Lynen, F., Borremans, F., Sandra, P.: Practical evaluation of the influence of excessive sample concentration on the estimation of dissociation constants with affinity capillary electrophoresis. Electrophoresis 22, 1974–1978 (2001)

    Article  CAS  Google Scholar 

  57. Rundlett, K.L., Armstrong, D.W.: Examination of the origin, variation, and proper use of expressions for the estimation of association constants by capillary electrophoresis. J. Chromatogr. A 721, 173–186 (1996)

    Article  CAS  Google Scholar 

  58. Abadie, C., Hug, M., Kübli, C., Gains, N.: Effect of cyclodextrins and undigested starch on the loss of chenodeoxycholate in the feces. Biochem. J. 229, 725–730 (1994)

    Google Scholar 

  59. Tan, Z.J., Zhu, X.X., Brown, G.R.: Formation of inclusion complexes of cyclodextrins with bile salt anions as determined by NMR titration studies. Langmuir 10, 1034–1039 (1994)

    Article  CAS  Google Scholar 

  60. Liu, Y., Li, L., Chen, Y., Yu, L., Fan, Z., Ding, F.: Molecular recognition thermodynamics of bile salts by β-cyclodextrin dimers: factors governing the cooperative binding of cyclodextrin dimers. J. Phys. Chem. B 109, 4129–4134 (2005)

    Article  CAS  Google Scholar 

  61. Schönbeck, C., Westh, P., Madsen, J.C., Larsen, K.L., Städe, L.W., Holm, R.: Hydroxypropyl substituted β-cyclodextrins: influence of degree of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir 26, 17949–17957 (2010)

    Article  Google Scholar 

  62. Holm, R., Madsen, J.C., Shi, W., Larsen, K.L., Städe, L.W., Westh, P.: Thermodynamics of complexation of tauro- and glyco-conjugated bile salts with two modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 69, 201–211 (2011)

    Article  CAS  Google Scholar 

  63. Schönbeck, C., Westh, P., Madsen, J.C., Larsen, K.L., Stade, L.W., Holm, R.: Methylated beta-cyclodextrins: influence of degree and pattern of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir 27, 5832–5841 (2011)

    Article  Google Scholar 

  64. Zia, V., Rajewski, R.A., Stella, V.J.: Thermodynamics of binding of neutral molecules to sulfobutyl ether β-cyclodextrins (SBE-β-CDs): the effect of total degree of substitution. Pharm. Res. 17, 936–941 (2000)

    Article  CAS  Google Scholar 

  65. Inoue, Y., Hakushi, T., Liu, Y., Tong, L.-H., Shen, B.-J., Jin, D.-S.: Thermodynamics of molecular recognition by cyclodextrins. 1. Calorimetric titration of inclusion complexation of naphthalenesulfonates with α-, β-, and γ-cyclodextrins: enthalpy-entropy compensation. J. Am. Chem. Soc. 115, 475–481 (1993)

    Article  CAS  Google Scholar 

  66. Inoue, Y., Lin, Y., Tong, L.-H., Shen, B.-J., Jin, D.-S.: Thermodynamics of molecular recognition by cyclodextrins. 2. Calorimetric titration of inclusion complexation with modified β-cyclodextrins. Enthalpy–entropy compensation in host-guest complexation: from ionophone to cyclodextrin and cyclophane. J. Am. Chem. Soc. 115, 10637–10644 (1993)

    Article  CAS  Google Scholar 

  67. Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Wiley, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Holm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, R., Østergaard, J., Schönbeck, C. et al. Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-β-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction. J Incl Phenom Macrocycl Chem 78, 185–194 (2014). https://doi.org/10.1007/s10847-013-0287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-013-0287-0

Keywords

Navigation