Skip to main content
Log in

An alignment independent 3D-QSAR study for predicting the stability constants of structurally diverse compounds with β-cyclodextrin

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

For the first time, to our opinion, an alignment free, three dimensional quantitative structure activity relationships (3D-QSAR) of stability constants of a large and heterogeneous variety of organic substances with β-cyclodextrin was reported. GRIND methodology, where descriptors are derived from GRID molecular interaction fields (MIF), was used. After variable selection via fractional factorial design (FFD), PLS analysis was carried out, and a highly descriptive and predictive model was obtained. The model satisfied a set of rigorous validation criteria and performed well in the prediction of an external test set. The proposed model is also checked for free from chance correlation, reliability and robustness by permutation testing called progressive y scrambling. The obtained models confirmed that size and shape of the molecules as well as hydrophobic interactions are the main parameters influencing the stabilities of diverse compounds—β-cyclodextrin inclusion complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)

    Article  CAS  Google Scholar 

  2. Thompson, D.O.: Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Criti. Rev. Ther. Drug. Carr. Syst. 14, 1–104 (1997)

    CAS  Google Scholar 

  3. Hedges, A.H.: Industrial Applications of Cyclodextrins. Chem. Rev. 98, 2035–2044 (1998)

    Article  CAS  Google Scholar 

  4. Szejtli, J.: Past, present, and future of cyclodextrin research. Pure. App. Chem. 76, 1825–1845 (2004)

    Article  CAS  Google Scholar 

  5. Szejtli, J.: Utilization of cyclodextrins in industrial products andprocesses. J. Mater. Chem. 7, 575–587 (1997)

    Article  CAS  Google Scholar 

  6. Vyas, A., Saraf, S.: Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem. 62, 23–42 (2008)

    Article  CAS  Google Scholar 

  7. Beck, M.T., Nagypal, I.: Chemistry of Complex Equilibria, Chap. 1. Horwood, Chichester. ISBN 0853121435. (1990)

  8. Connors, K.A.: The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 97, 1325–1357 (1997)

    Article  CAS  Google Scholar 

  9. Loftsson, T., Stefansson, E.: Cyclodextrins in ocular drug delivery: theoretical basis with dexamethasone as a sample drug. J. Drug. Del. Sci. Tech. 17, 3–9 (2007)

    CAS  Google Scholar 

  10. Lipkowitz, K.B.: Applications of Computational Chemistry to the Study of Cyclodextrins. Chem. Rev. 98, 1829–1873 (1998)

    Article  CAS  Google Scholar 

  11. Hansch, C., Leo, A.: Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. American Chemical Society, Washington, DC (1995)

    Google Scholar 

  12. Estrada, E., Perdomo-Lopez, I., Torres-Labandeira, J.J.: Combination of 2D-, 3D-Connectivity and Quantum Chemical Descriptors in QSPR. Complexation of α- and β-Cyclodextrin with Benzene Derivatives. J. Chem. Inf. Comput. Sci. 41, 1561–1568 (2001)

    Article  CAS  Google Scholar 

  13. Perez-Garrido, A., Helguera, A.M., Guillen, A.A., Cordeiro, N.D.S., Escudero, A.G.: Convenient QSAR model for predicting the complexation of structurally diverse compounds with b-cyclodextrins. Bioorg. Med. Chem. 17, 896–904 (2009)

    Article  CAS  Google Scholar 

  14. Suzukia, T., Ishidaa, M., Fabian, W.M.F.: Classical QSAR and comparative molecular field analyses of the host-guest interaction of organic molecules with cyclodextrins. J. Comp. Aid. Mol. Des. 14, 669–678 (2000)

    Article  Google Scholar 

  15. Nayak, V.R., Kellogg, G.E.: Cyclodextrin-barbiturate inclusion complexes: A CoMFA/HINT 3-D QSAR study. Med. Chem. Res. 3, 491–502 (1994)

    CAS  Google Scholar 

  16. Ghasemi, J.B., Saaidpour, S.: QSPR modeling of stability constants of diverse 15-crown-5 ethers complexes using best multiple linear regression. J. Incl. Phenom. Macrocycl. Chem. 60, 339–351 (2008)

    Article  CAS  Google Scholar 

  17. Ghasemi, J.B., Rofouei, M.K., Salahinejad, M.: A QSPR Study of the Stability Constant of Crown Ethers by Molecular Modelling: New Descriptors for Lariat Effect. J. Incl. Phenom. Macrocycl. Chem. In Press (2010)

  18. Suzuki, T.: A Nonlinear Group Contribution Method for Predicting the Free Energies of Inclusion Complexation of Organic Molecules with α- and β-Cyclodextrins. J. Chem. Inf. Comp. Sci. 41, 1266–1273 (2001)

    Article  CAS  Google Scholar 

  19. Hudson, S.B., Hyde, M.R., Rahr, E., Wood, J.: Parameter based methods for compound selection from chemical databases. Quant. Struct. Act. Relat. 15, 285–289 (1996)

    Article  CAS  Google Scholar 

  20. Clark, R.D., Foz, P.C.: Statistical variation in progressive scrambling. J. Com. Aid. Mol. Des. 18, 563–576 (2004)

    Article  CAS  Google Scholar 

  21. Clark, R.D.: Boosted leave-many-out cross-validation: the effect of training and test set diversity on PLS statistics. J. Com. Aid. Mol. Des. 17, 265–275 (2003)

    Article  CAS  Google Scholar 

  22. Duran, A., Martinez, G.C., Pastor, M.: Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields. J. Chem. Inf. Model. 48,1813-1823(2008); Pentacle 1.0.3; http://cadd.imim.es/grib-cadd/projects/pentacle; http://www.moldiscovery.com (accessed on 29/09/2009)

  23. Cratteri, P., Romanelli, M.N., Cruciani, G., Melani, C.B., Melani, F.: GRIND-derived pharmacophore model for a series of α-tropanyl derivative ligands of the sigma-2 receptor. J. Com. Aid. Mol. Des. 18, 361–374 (2004)

    Article  CAS  Google Scholar 

  24. Pastor, M., Cruciani, G., McLay, I., Pickett, S., Clementi, S.: GRid-INdependent descriptors (GRIND): a novel class of alignment-independent three-dimensional molecular descriptors. J. Med. Chem. 43, 3233–3243 (2000)

    Article  CAS  Google Scholar 

  25. Cruciani, G.: Molecular interaction fields, Applications in Drug Discovery and ADME Prediction, vol. 27. Wiley-VCH publication, Weinheim (2006)

    Google Scholar 

  26. Wold, S., Esbensen, K., Geladi, P.: Principal Component analysis. Chem. Intell. Lab. Syst. 2, 37–52 (1987)

    Article  CAS  Google Scholar 

  27. Dragos, H., Gilles, M., Alexandre, V.: Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J. Chem. Inf. Model. 49, 1762–1776 (2009)

    Article  CAS  Google Scholar 

  28. Dimitrov, S., Dimitrova, G., Pavlov, T., Dimitrova, N., Patlewicz, G., Niemela, J., Mekenyan, O.: A Stepwise Approach for Defining the Applicability Domain of SAR and QSAR Models. J.Chem. Inf. Model. 45, 839–849 (2005)

    Article  CAS  Google Scholar 

  29. Canceill, J., Lacombe, L., Collet, A.: Water-soluble cryptophane binding lipophilic guests in aqueous solution. J. Chem. Soc. Chem. Commun. 3, 219–221 (1987)

    Article  Google Scholar 

  30. Hirayama, F., Uekama, K.: In: Duchene, D. (ed.) Cyclodextrin and Their Industrial Uses, pp. 131–172. Editions De Sant′e, Paris (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, J.B., Salahinejad, M. & Rofouei, M.K. An alignment independent 3D-QSAR study for predicting the stability constants of structurally diverse compounds with β-cyclodextrin. J Incl Phenom Macrocycl Chem 71, 195–206 (2011). https://doi.org/10.1007/s10847-011-9927-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-9927-4

Keywords

Navigation