Skip to main content
Log in

Physicochemical and thermodynamic characterization of hydroxy pentacyclic triterpenoic acid/γ-cyclodextrin inclusion complexes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Hydroxy pentacyclic triterpenoic acids (HPTAs) have been described to exhibit numerous pharmacological properties. They also exhibit poor hydrosolubility, thus affecting their potential clinical interest. The association of these active substances with cyclodextrins could be employed to improve some properties such as bioavailability and activity. 1:1 Inclusion complexes of ursolic, oleanolic and betulinic acids with γ-cyclodextrin were evaluated by DSC and 1H NMR spectroscopy. The apparent formation constants (Kf) of the formed complexes were determined using RP-HPLC. Thermodynamic parameters ΔGº, ΔHº and ΔSº were calculated with temperatures ranging from 25 to 45 °C to evaluate the complexation process. Finally the influence of γ-CD on the HPTA water solubility was investigated by phase-solubility studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali, Z., Khan, S.I., Ferreira, D., Khan, I.A.: Podocarpaside, a triterpenoid possessing a new backbone from Actaea podocarpa. Org. Lett. 8, 5529–5532 (2006)

    Article  CAS  Google Scholar 

  2. Han, S.K., Ko, Y.I., Park, S.J., Jin, I.J., Kim, Y.M.: Oleanolic acid and ursolic acid stabilize liposomal membranes. Lipids 32, 769–773 (1997)

    Article  CAS  Google Scholar 

  3. Li, J., Guo, W.J., Yang, Q.Y.: Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J. Gastroenterol. 8, 493–495 (2002)

    CAS  Google Scholar 

  4. Murakami, S., Takashima, H., Sato-Watanabe, M., Chonan, S., Yamamoto, K., Saitoh, M., Saito, S., Yoshimura, H., Sugawara, K., Yang, J., Gao, N., Zhang, X.: Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1. FEBS Lett. 566, 55–59 (2004)

    Article  CAS  Google Scholar 

  5. Tan, Y., Yu, R., Pezzuto, J.M.: Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clin. Cancer Res. 9, 2866–2875 (2003)

    CAS  Google Scholar 

  6. Altinier, G., Sosa, S., Aquino, R.P., Mencherini, T., Della Loggia, R., Tubaro, A.: Characterization of topical antiinflammatory compounds in Rosmarinus officinalis. J. Agric. Food Chem. 55, 1718–1723 (2007)

    Article  CAS  Google Scholar 

  7. Chowdhury, A.R., Mandal, S., Mittra, B., Sharma, S., Mukhopadhyay, S., Majumder, H.K.: Betulinic acid, a potent inhibitor of eukaryotic topoisomerase I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. Med. Sci. Monit. 8, 254–265 (2002)

    Google Scholar 

  8. Saravanan, R., Pugalendi, V.: Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacol. Rep. 58, 41–47 (2006)

    CAS  Google Scholar 

  9. Ismaili, H., Milella, L., Fkih-Tetouani, S., Ilidrissi, A., Camporese, A., Sosa, S., Altinier, G., Della Loggia, R., Aquino, R.: In vivo topical anti-inflammatory and in vitro antioxidant activities of two extracts of Thymus satureioides leaves. J. Ethnopharmacol. 91, 31–36 (2004)

    Article  CAS  Google Scholar 

  10. Somova, L.I., Shode, F.O., Ramnanan, P., Nadar, A.: Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 84, 299–305 (2003)

    Article  CAS  Google Scholar 

  11. Liu, J.: Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49, 57–68 (1995)

    Article  CAS  Google Scholar 

  12. Xu, H.X., Zeng, F.Q., Wan, M., Sim, K.Y.: Anti-HIV triterpene acids from Geum japonicum. J. Nat. Prod. 59, 643–645 (1996)

    Article  CAS  Google Scholar 

  13. Somova, L.O., Nadar, A., Rammanan, P., Shode, F.O.: Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 10, 115–121 (2003)

    Article  CAS  Google Scholar 

  14. Germonprez, N., Maes, L., Van Puyvelde, L., Van Tri, M., Tuan, D.A., De Kimpe, N.: In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J. Med. Chem. 48, 32–37 (2005)

    Article  CAS  Google Scholar 

  15. Hu, J.F., Garo, E., Goering, M.G., Pasmore, M., Yoo, H.D., Esser, T., Sestrich, J., Cremin, P.A., Hough, G.W., Perrone, P., Lee, Y.S., Le, N.T., O’Neil-Johnson, M., Costerton, J.W., Eldridge, G.R.: Bacterial biofilm inhibitors from Diospyros dendo. J. Nat. Prod. 69, 118–120 (2006)

    Article  CAS  Google Scholar 

  16. He, Z.D., Ma, C.Y., Zhang, H.J., Tan, G.T., Tamez, P., Sydara, K., Bouamanivong, S., Southavong, B., Soejarto, D.D., Pezzuto, J.M., Fong, H.H.: Antimalarial constituents from Nauclea orientalis (L.). Chem. Biodivers. 2, 1378–1386 (2005)

    Article  CAS  Google Scholar 

  17. Kashiwada, Y., Wang, H.K., Nagao, T., Kitanaka, S., Yasuda, I., Fujioka, T., Yamagishi, T., Cosentino, L.M., Kozuka, M., Okabe, H., Ikeshiro, Y., Hu, C.Q., Yeh, E., Lee, K.H.: Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoides. J. Nat. Prod. 61, 1090–1095 (1998)

    Article  CAS  Google Scholar 

  18. Liu, J.: Oleanolic acid and ursolic acid: research perspectives. J. Ethnopharmacol. 100, 92–94 (2005)

    Article  CAS  Google Scholar 

  19. Setzer, W.N., Rozmus, G.F., Setzer, M.C., Schmidt, J.M., Vogler, B., Reeb, S., Jackes, B.R., Irvine, A.K.: Bioactive principles in the bark of Pilidiostigma tropicum. J. Mol. Model. 12, 703–711 (2006)

    Article  CAS  Google Scholar 

  20. Cowan, M.M.: Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582 (1999)

    CAS  Google Scholar 

  21. Szejtli, J.: Cyclodextrin technology. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  22. Procyk, A.D., Bissell, M., Street Jr, K.W., Acree Jr, W.E.: Solubility in binary solvent systems: 8. Estimation of binary alkane plus p-dioxane solvent nonideality from measured anthracene solubilities. J. Pharm. Sci. 76, 621–625 (1987)

    Article  CAS  Google Scholar 

  23. Stella, V.J., He, Q.: Cyclodextrins. Toxicol. Pathol. 36, 30–42 (2008)

    Article  CAS  Google Scholar 

  24. Szejtli, J., Gerloczy, A., Szente, L., Benky-Elod, E., Sebestyen, G., Fonagy, A., Kurcz, M.: Enhancement of drug absorption with cyclodextrin inclusion complexes. Acta. Pharm. Hung. Acad. Sci. Hung. 49, 207–221 (1979)

    CAS  Google Scholar 

  25. Jansook, P., Kurkov, S.V., Loftsson, T.: Cyclodextrins as solubilizers: formation of complex aggregates. J. Pharm. Sci. 99, 719–729 (2010)

    CAS  Google Scholar 

  26. Claude, B., Morin, P., Lafosse, M., Andre, P.: Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized beta- and gamma-cyclodextrins by reversed phase liquid chromatography. J. Chromatogr. A 1049, 37–42 (2004)

    CAS  Google Scholar 

  27. Clarot, I., Clédat, D., Guillaume, Y.C., Cardot, P.J.P.: Chromatographic study of terpene-β-cyclodextrin complexes on porous graphitic carbon stationary phase. Chromatographia 54, 447–453 (2001)

    Article  CAS  Google Scholar 

  28. Higuchi, T., Connors, K.A.: Phase-solubility techniques. In: Reilly, C.N. (ed.) Advances in Analytical Chemistry Instrumentation, vol. 4, pp. 117–212. Wiley-Interscience, New York (1965)

    Google Scholar 

  29. Matsui, Y., Mochida, K.: Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. Bull. Chem. Soc. Jpn. 52, 2808–2814 (1979)

    Article  CAS  Google Scholar 

  30. Uekama, K., Hirayama, F., Irie, T.: New method for determination of the stability constants of cyclodextrin-prostaglandin inclusion complexes by liquid chromatography. Chem. Lett. 7, 661–664 (1978)

    Article  Google Scholar 

  31. Roussel, C., Favrou, A.: HPLC separation of the atropisomers of some substituted N-arylthiazoline-2-thiones with γ-cyclodextrin as a chiral mobile phase additive: size and lipophilicity effects of substituents. J. lncl. Phenom. Mol. 16, 283–296 (1993)

    Article  CAS  Google Scholar 

  32. Pralhad, T., Rajendrakumar, K.: Study of freeze-dried quercetin-cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J. Pharm. Biomed. Anal. 34, 333–339 (2004)

    Article  CAS  Google Scholar 

  33. Schneider, H.-J., Hacket, F., Rüdiger, V., Ikeda, H.: NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98, 1755–1786 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support of this work was provided by the French Ministry of Education and Research and the French National Scientific Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Clarot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontanay, S., Kedzierewicz, F., Duval, R.E. et al. Physicochemical and thermodynamic characterization of hydroxy pentacyclic triterpenoic acid/γ-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 73, 341–347 (2012). https://doi.org/10.1007/s10847-011-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-011-0063-y

Keywords

Navigation