Skip to main content
Log in

Synthesis, morphology, and thermal behavior of polyrotaxanes composed of γ-cyclodextrin and polydimethylsiloxanes

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Epoxy-terminated polydimethylsiloxanes of two molecular weights (M n about 1,250 and 2,100) were proved to undergo inclusion complexation into the inner cavity of γ-cyclodextrin, thus resulting in formation of polyrotaxanes. The supramolecular assembling, the structure, the morphology, and the thermal properties of polyrotaxanes were shown to depend on the polymer molecular weight, the molar ratio between the components, and the presence of free γ-cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schill, G.: Catenanes, Rotaxanes, and Knots. Academic Press, New York & London (1971)

    Google Scholar 

  2. Huang, F., Gibson, H.W.: Polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 30, 982–1010 (2005). doi:10.1016/j.progpolymsci.2005.07.003

    Article  CAS  Google Scholar 

  3. Szejtli, J.: Present, past, and future of cyclodextrin research. Pure Appl. Chem. 76, 1825–1832 (2004). doi:10.1351/pac200476101825

    Article  CAS  Google Scholar 

  4. Balzani, V., Gumez-Lipez, M., Stoddart, J.F.: Molecular machines. Acc. Chem. Res. 31, 405–411 (1998). doi:10.1021/ar970340y

    Article  CAS  Google Scholar 

  5. Han, B.H., Antonietti, M.: Cyclodextrin-based pseudorotaxanes as templates for the generation of porous silica. Chem. Mater. 14, 3477–3488 (2002). doi:10.1021/cm0113088

    Article  CAS  Google Scholar 

  6. Ooya, T., Eguchi, M., Ozaki, A., Yui, N.: Carboxyethyl easter-polyrotaxanes as new calcium binding and mechanism of trypsin inhibition. Int. J. Pharm. 242, 47–52 (2002). doi:10.1016/S0378-5173(02)00139-4

    Article  CAS  Google Scholar 

  7. Lee, J.Y., Park, S.M.: Electrochemistry of guest molecules in thiolated cyclodextrin self-assembled monolays: an application for size-selective sensors. J. Phys. Chem. B 102, 9940–9945 (1998). doi:10.1021/jp9828235

    Article  CAS  Google Scholar 

  8. Balzani, V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000). doi:10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X

    Article  CAS  Google Scholar 

  9. Hubin, T.J., Busch, D.H. Templates routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000) doi: 10.1016/S0010-8545(99)00242-8

  10. Okumura, H., Okada, M., Kawaguchi, Y., Harada, A.: Complex formation between poly(dimethylsiloxane) and cyclodextrins: new pseudo-rotaxanes containing inorganic polymers. Macromolecules 33, 4297–4298 (2000). doi:10.1021/ma991934e

    Article  CAS  Google Scholar 

  11. Okumura, H., Kawaguchi, Y., Harada, A.: Complex formation between poly(dimethylsilane) and cyclodextrins. Macromol. Rapid Commun. 23, 781–785 (2002). doi:10.1002/1521-3927(20020901)23:13<781::AID-MARC781>3.0.CO;2-C

    Article  CAS  Google Scholar 

  12. Sukhanova, T., Bronnikov, S., Grigoryev, A., Gubanova, G., Perminova, M., Marangoci, N., Pinteala, M., Harabagiu, V., Simionescu, B.C.: Synthesis, structure, and thermal properties of polyrotaxanes derived from β-cyclodextrin. Russ. J. Appl. Chem. 80, 1111–1115 (2007). doi:10.1134/S1070427207070191

    Article  CAS  Google Scholar 

  13. Marangoci, N., Farcas, A., Pinteala, M., Harabagiu, V., Simionescu, B.C., Sukhanova, T., Bronnikov, S., Grigoryev, A., Gubanova, G., Perminova, M., Perichaud, A.: Polyrotaxanes composed of β-cyclodextrin and polydimethylsiloxanes: synthesis, morphology and thermal behavior. High Perform. Polym. 20, 251–266 (2008). doi:10.1177/0954008307079538

    Article  CAS  Google Scholar 

  14. Witten, B., Reid, E.E.: Organic Synthesis, vol. 4, pp. 47–63. Wiley, New York & London (1963)

    Google Scholar 

  15. Harabagiu, V., Pinteala, M., Cotzur, C., Holerca, M.N., Ropot, M.J.: Functional polysiloxanes: 3. Reaction of 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane with amino compounds. J. Macromol. Sci. A 32, 1641–1648 (1995)

    Article  Google Scholar 

  16. Uyar, T., Hunt, M.A., Gracz, H.S., Tonelli, A.E.: Crystalline cyclodextrin inclusion compounds formed with aromatic guests: guest-dependent stoichiometrics and hydratation-sensitive crystal structures. Cryst. Growth Des. 6, 1113–1119 (2006). doi:10.1021/cg050500+

    Article  CAS  Google Scholar 

  17. Martinez, G., Gomez, M.A., Tonelli, A.E.: Formation of crystalline inclusion complexes of poly(vinyl chloride) with γ-cyclodextrin. Proceedings 41st International Symposium on Macromolecules, p. 118. Rio de Janeiro, Brazil, 16–21 July 2006

  18. Shuai, X., Porbeni, F.E., Wei, M., Bullions, T., Tonelli, A.E.: Inclusion complex formation between α, γ-cyclodextrins and triblock copolymer and the cyclodextrin-type-dependent microphase structures of their coalesced samples. Macromolecules 35, 2401–2405 (2002). doi:10.1021/ma012085+

    Article  CAS  Google Scholar 

  19. Panova, I.G., Gerasimov, V.I., Tashlitsky, V.N., Topchieva, I.N., Kabanov, V.A.: Crystalline inclusion complexes based on cyclodextrins and triblock copolymers of ethylene and propylene oxides. Polym. Sci. A 39, 452–458 (1997)

    Google Scholar 

  20. Panova, I.G., Matukhina, E.V., Popova, E.I., Gerasimov, V.I., Topchieva, I.N.: Structure of inclusion complexes of β-cyclodextrin with poly(propylene oxide). Polym. Sci. A 43, 771–777 (2001)

    Google Scholar 

  21. Guo, J., Sun, J., Cao, H., Yang, H.: Inclusion complexes of cholesteryl-(ε-caprolactone)-functionalized polymer with γ-cyclodextrin. J. Incl. Phenom. 60, 95–101 (2002)

    Google Scholar 

  22. Ahmed, F.R., Hall, S.R., Huber, C.P.: Crystallographic Computing. Munksgaard, Copenhagen (1970)

    Google Scholar 

  23. Kilian, H.G., Metzler, R., Zink, B.: Aggregate model of liquids. J. Chem. Phys. 107, 8697–8704 (1997). doi:10.1063/1.475022

    Article  CAS  Google Scholar 

  24. Kilian, H.G., Bronnikov, S., Sukhanova, T.: Transformations of the micro-domain structure of polyimide films during thermally induced chemical conversion: characterization via thermodynamics of irreversible processes. J. Phys. Chem. B 107, 13575–13582 (2003). doi:10.1021/jp035074m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of the Russian Foundation for Basic Research (project 07-03-91681) and of the Romanian Academy (project 3/2008) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Bronnikov.

Additional information

Narcisa Marangoci, Valeria Harabagiu, Bogdan C. Simionescu were the Members of the European Polysaccharide Network of Excellence (EPNOE), http://www.epnoe.eu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marangoci, N., Farcas, A., Pinteala, M. et al. Synthesis, morphology, and thermal behavior of polyrotaxanes composed of γ-cyclodextrin and polydimethylsiloxanes. J Incl Phenom Macrocycl Chem 63, 355–364 (2009). https://doi.org/10.1007/s10847-008-9529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9529-y

Keywords

Navigation