Skip to main content
Log in

Controlled actuation, adhesion, and stiffness in soft robots: A review

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Rigid robotic grippers are not capable of self-adjusting their grip size based on any real-time changes in the dimensions of the target object. This problem of self-adjustment can be addressed by soft robotic grippers. In the past few decades, new methods, and techniques to develop and control soft actuators have been explored by researchers worldwide. Soft robotic grippers can be categorized into three technologies which are controlled actuation, controlled adhesion, and controlled stiffness. Using these three technologies soft robots can mimic the morphology of the gripping and locomotion mechanisms of various animals. This study is aimed to present an introductory review for researchers who want to explore the field of soft robotics. While previous reports focussed on granular jamming structures to control stiffness, the present study emphasized laminar jamming structures and discussed the recent soft actuators developed using these structures. It was observed that soft actuators with a longitudinal strain like mckibben and peano HASEL exert high forces compared to bending actuators. Also, sandwiched laminar jammers can generate greater stiffness compared to homogeneous laminar jammers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Code Availability

Not applicable.

References

  1. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013). https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  2. Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5, 1–11 (2015). https://doi.org/10.1038/srep10487

    Article  Google Scholar 

  3. Zhang, S., Ke, X., Jiang, Q., Ding, H., Wu, Z.: Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Sci. Robot. 6, 1–13 (2021). https://doi.org/10.1126/scirobotics.abd6107

    Article  Google Scholar 

  4. Liu, Q., Gu, X., Tan, N., Ren, H.: Soft Robotic Gripper Driven by Flexible Shafts for Simultaneous Grasping and In-Hand Cap Manipulation. IEEE Trans. Autom. Sci. Eng. 18, 1134–1143 (2021). https://doi.org/10.1109/TASE.2020.2997076

    Article  Google Scholar 

  5. Henke, M., Sorber, J., Gerlach, G.: EAP-Actuators with Improved Actuation Capabilities for Construction Elements with Controllable Stiffness. Adv. Sci. Technol. 79, 75–80 (2012). https://doi.org/10.4028/www.scientific.net/ast.79.75

    Article  Google Scholar 

  6. Li, C., Lau, G.C., Yuan, H., Aggarwal, A., Dominguez, V.L., Liu, S., Sai, H., Palmer, L.C., Sather, N.A., Pearson, T.J., Freedman, D.E., Amiri, P.K., de la Cruz, M.O., Stupp, S.I.: Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci. Robot. 5, (2020). https://doi.org/10.1126/scirobotics.abb9822

  7. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft Robotic Grippers. Adv. Mater. 30, (2018). https://doi.org/10.1002/adma.201707035

  8. Fitzgerald, S.G., Delaney, G.W., Howard, D.: A Review of Jamming Actuation in Soft Robotics. Actuators. 9, 104 (2020). https://doi.org/10.3390/act9040104

    Article  Google Scholar 

  9. Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F.S., Kumar, S., Shin, M.: Soft robotics: A review of recent developments of pneumatic soft actuators. Actuators. 9, (2020). https://doi.org/10.3390/act9010003

  10. Boesel, L.F., Cremer, C., Arzt, E., Campo, A.D.: Gecko-inspired surfaces: A path to strong and reversible dry adhesives. Adv. Mater. 22, 2125–2137 (2010). https://doi.org/10.1002/adma.200903200

    Article  Google Scholar 

  11. Wang, W., Ahn, S.: Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft Robot. 4, 379–389 (2017). https://doi.org/10.1089/soro.2016.0081

    Article  Google Scholar 

  12. Cutkosky, M.R.: Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus. 5, 20150015 (2015). https://doi.org/10.1098/rsfs.2015.0015

    Article  Google Scholar 

  13. Kim, Y., Cha, Y.: Soft Pneumatic Gripper With a Tendon-Driven Soft Origami Pump. 8, 1–11 (2020). https://doi.org/10.3389/fbioe.2020.00461

    Article  Google Scholar 

  14. Mohd Ghazali, F.A., Mah, C.K., AbuZaiter, A., Chee, P.S., Mohamed Ali, M.S.: Soft dielectric elastomer actuator micropump. Sensors Actuators A Phys. 263, 276–284 (2017). https://doi.org/10.1016/j.sna.2017.06.018

    Article  Google Scholar 

  15. Kim, O., Kim, S.J., Park, M.J.: Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018). https://doi.org/10.1039/C8CC01670D

    Article  Google Scholar 

  16. Zhao, S., Li, D., Xiang, J.: Design and application of PneuNets bending actuator. Aircr. Eng. Aerosp. Technol. 92, 1539–1546 (2020). https://doi.org/10.1108/AEAT-07-2019-0140

    Article  Google Scholar 

  17. Wakimoto, S., Suzumori, K., Kanda, T.: Development of intelligent McKibben actuator. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 487–492. IEEE, Seoul, Korea (South) (2005)

  18. Youn, J.H., Jeong, S.M., Hwang, G., Kim, H., Hyeon, K., Park, J., Kyung, K.U.: Dielectric elastomer actuator for soft robotics applications and challenges. Appl. Sci. 10, (2020). https://doi.org/10.3390/app10020640

  19. Mitchell, S.K., Wang, X., Acome, E., Martin, T., Ly, K., Kellaris, N., Venkata, V.G., Keplinger, C.: An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots. Adv. Sci. 6, (2019). https://doi.org/10.1002/advs.201900178

  20. Gerez, L., Gao, G., Liarokapis, M.: Laminar Jamming Flexure Joints for the Development of Variable Stiffness Robot Grippers and Hands. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 8709–8715. IEEE, Las Vegas, NV, USA (2020)

  21. Narang, Y.S., Vlassak, J.J., Howe, R.D.: Mechanically Versatile Soft Machines through Laminar Jamming. Adv. Funct. Mater. 28, 1707136 (2018). https://doi.org/10.1002/adfm.201707136

    Article  Google Scholar 

  22. Narang, Y.S., Aktaş, B., Ornellas, S., Vlassak, J.J., Howe, R.D.: Lightweight Highly Tunable Jamming-Based Composites. Soft Robot. 7, 724–735 (2020). https://doi.org/10.1089/soro.2019.0053

    Article  Google Scholar 

  23. Majidi, C., Wood, R.J.: Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl. Phys. Lett. 97, 2012–2015 (2010). https://doi.org/10.1063/1.3503969

    Article  Google Scholar 

  24. Yufei, H., Tianmiao, W., Xi, F., Kang, Y., Ling, M., Juan, G., Li, W.: A variable stiffness soft robotic gripper with low-melting-point alloy. In: 2017 36th Chinese Control Conference (CCC). pp. 6781–6786. IEEE, Dalian, China (2017)

  25. Liao, T., Kalairaj, M.S., Cai, C.J., Tse, Z.T.H., Ren, H.: Fully-Printable Soft Actuator with Variable Stiffness by Phase Transition and Hydraulic Regulations. Actuators. 10, 269 (2021). https://doi.org/10.3390/act10100269

    Article  Google Scholar 

  26. Hoang, T.T., Quek, J.J.S., Thai, M.T., Phan, P.T., Lovell, N.H., Do, T.N.: Soft robotic fabric gripper with gecko adhesion and variable stiffness. Sensors Actuators, A Phys. 323, 112673 (2021). https://doi.org/10.1016/j.sna.2021.112673

  27. Germann, J., Schubert, B., Floreano, D.: Stretchable electroadhesion for soft robots. In: IEEE International Conference on Intelligent Robots and Systems. pp. 3933–3938. IEEE, Chicago, IL, USA (2014)

  28. Smooth Vertical Surface Climbing With Directional Adhesion: Sangbae Kim, Spenko, M., Trujillo, S., Heyneman, B., Santos, D., Cutkosky, M.R. IEEE Trans. Robot. 24, 65–74 (2008). https://doi.org/10.1109/TRO.2007.909786

    Article  Google Scholar 

  29. Liu, R., Chen, R., Shen, H., Zhang, R.: Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes. Int. J. Adv. Robot. Syst. 10, 36 (2013). https://doi.org/10.5772/54634

    Article  Google Scholar 

  30. Huang, J., Liu, Y., Yang, Y., Zhou, Z., Mao, J., Wu, T., Liu, J., Cai, Q., Peng, C., Xu, Y., Zeng, B., Luo, W., Chen, G., Yuan, C., Dai, L.: Electrically programmable adhesive hydrogels for climbing robots. Sci. Robot. 6, eabe1858 (2021). https://doi.org/10.1126/scirobotics.abe1858

  31. Ni, X., Liao, C., Li, Y., Zhang, Z., Sun, M., Chai, H., Wu, H., Jiang, S.: Experimental study of multi-stable morphing structures actuated by pneumatic actuation. Int. J. Adv. Manuf. Technol. 108, 1203–1216 (2020). https://doi.org/10.1007/s00170-020-05301-1

    Article  Google Scholar 

  32. Christianson, C., Goldberg, N.N., Deheyn, D.D., Cai, S., Tolley, M.T.: Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3, eaat1893 (2018). https://doi.org/10.1126/scirobotics.aat1893

  33. Rodrigue, H., Wang, W., Kim, D., Ahn, S.: Curved shape memory alloy-based soft actuators and application to soft gripper. Compos. Struct. 176, 398–406 (2017). https://doi.org/10.1016/j.compstruct.2017.05.056

    Article  Google Scholar 

  34. Mitchell, S.K., Wang, X., Acome, E., Martin, T., Ly, K., Kellaris, N., Venkata, V.G., Keplinger, C.: An Easy-to-Implement Toolkit to Create Versatile and High-Performance HASEL Actuators for Untethered Soft Robots. Adv. Sci. 1900178, 1900178 (2019). https://doi.org/10.1002/advs.201900178

    Article  Google Scholar 

  35. Wang, Z., Or, K., Hirai, S.: A dual-mode soft gripper for food packaging. Rob. Auton. Syst. 125, 103427 (2020). https://doi.org/10.1016/j.robot.2020.103427

    Article  Google Scholar 

  36. Joe, S., Totaro, M., Wang, H., Beccai, L.: Development of the Ultralight Hybrid Pneumatic Artificial Muscle: Modelling and optimization. PLoS ONE 16, e0250325 (2021). https://doi.org/10.1371/journal.pone.0250325

    Article  Google Scholar 

  37. Manns, M., Morales, J., Frohn, P.: Additive manufacturing of silicon based PneuNets as soft robotic actuators. Procedia CIRP. 72, 328–333 (2018). https://doi.org/10.1016/j.procir.2018.03.186

    Article  Google Scholar 

  38. Zhao, H., Li, Y., Elsamadisi, A., Shepherd, R.: Scalable manufacturing of high force wearable soft actuators. Extrem. Mech. Lett. 3, 89–104 (2015). https://doi.org/10.1016/j.eml.2015.02.006

    Article  Google Scholar 

  39. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400–20403 (2011). https://doi.org/10.1073/pnas.1116564108

    Article  Google Scholar 

  40. Drotman, D., Jadhav, S., Sharp, D., Chan, C., Tolley, M.T.: Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6, (2021). https://doi.org/10.1126/SCIROBOTICS.AAY2627

  41. Stano, G., Arleo, L., Percoco, G.: Additive manufacturing for soft robotics: Design and fabrication of airtight, monolithic bending PneuNets with embedded air connectors. Micromachines. 11, (2020). https://doi.org/10.3390/MI11050485

  42. Haghiashtiani, G., Habtour, E., Park, S.H., Gardea, F., McAlpine, M.C.: 3D printed electrically-driven soft actuators. Extrem. Mech. Lett. 21, 1–8 (2018). https://doi.org/10.1016/j.eml.2018.02.002

    Article  Google Scholar 

  43. Schlatter, S., Illenberger, P., Rosset, S.: Peta-pico-Voltron: An open-source high voltage power supply. HardwareX. 4, e00039 (2018). https://doi.org/10.1016/j.ohx.2018.e00039

    Article  Google Scholar 

  44. Ji, X., Liu, X., Cacucciolo, V., Imboden, M., Civet, Y., Haitami, A. El, Cantin, S., Perriard, Y., Shea, H.: An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, (2019). https://doi.org/10.1126/scirobotics.aaz6451

  45. Lin, H.-T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6, 026007 (2011). https://doi.org/10.1088/1748-3182/6/2/026007

    Article  Google Scholar 

  46. Lendlein, A.: Fabrication of reprogrammable shape-memory polymer actuators for robotics. Sci. Robot. 3, eaat9090 (2018). https://doi.org/10.1126/scirobotics.aat9090

  47. Seok, S., Onal, C.D., Cho, K.J., Wood, R.J., Rus, D., Kim, S.: Meshworm: A peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatronics. 18, 1485–1497 (2013). https://doi.org/10.1109/TMECH.2012.2204070

    Article  Google Scholar 

  48. Yoder, Z., Kellaris, N., Chase-Markopoulou, C., Ricken, D., Mitchell, S.K., Emmett, M.B., Weir, R.F. f., Segil, J., Keplinger, C.: Design of a High-Speed Prosthetic Finger Driven by Peano-HASEL Actuators. Front. Robot. AI. 7, 181 (2020). https://doi.org/10.3389/FROBT.2020.586216/BIBTEX

  49. Kothera, C.S., Jangid, M., Sirohi, J., Wereley, N.M.: Experimental Characterization and Static Modeling of McKibben Actuators. In: Aerospace. pp. 357–367. ASMEDC (2006)

  50. Cacucciolo, V., Nabae, H., Suzumori, K., Shea, H.: Electrically-Driven Soft Fluidic Actuators Combining Stretchable Pumps With Thin McKibben Muscles. Front. Robot. AI. 6, 146 (2020). https://doi.org/10.3389/frobt.2019.00146

    Article  Google Scholar 

  51. Kurumaya, S., Nabae, H., Endo, G., Suzumori, K.: Design of thin McKibben muscle and multifilament structure. Sensors Actuators A Phys. 261, 66–74 (2017). https://doi.org/10.1016/J.SNA.2017.04.047

    Article  Google Scholar 

  52. Araromi, O.A., Burgess, S.C.: A finite element approach for modelling multilayer unimorph dielectric elastomer actuators with inhomogeneous layer geometry. Smart Mater. Struct. 21, (2012). https://doi.org/10.1088/0964-1726/21/3/032001

  53. Lau, G.-K., Goh, S.C.-K., Shiau, L.-L.: Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (ELD) silver. Sensors Actuators A Phys. 169, 234–241 (2011). https://doi.org/10.1016/j.sna.2011.04.037

    Article  Google Scholar 

  54. Goh, S.C.-K., Lau, G.-K.: Dielectric elastomeric bimorphs using electrolessly deposited silver electrodes. In: Bar-Cohen, Y. (ed.) Electroactive Polymer Actuators and Devices (EAPAD) 2010. p. 764215. SPIE, San Diego, California, United States (2010)

  55. Franke, M., Ehrenhofer, A., Lahiri, S., Henke, E.F.M., Wallmersperger, T., Richter, A.: Dielectric Elastomer Actuator Driven Soft Robotic Structures With Bioinspired Skeletal and Muscular Reinforcement. Front. Robot. AI. 7, 178 (2020). https://doi.org/10.3389/FROBT.2020.510757/BIBTEX

    Article  Google Scholar 

  56. Rothemund, P., Kellaris, N., Mitchell, S.K., Acome, E., Keplinger, C.: HASEL Artificial Muscles for a New Generation of Lifelike Robots—Recent Progress and Future Opportunities. Adv. Mater. 33, 1–28 (2021). https://doi.org/10.1002/adma.202003375

    Article  Google Scholar 

  57. Liu, J., Xu, L., He, C., Lu, X., Wang, F.K.: Transparent low-voltage-driven soft actuators with silver nanowires Joule heaters. Polym. Chem. 12, 5251–5256 (2021). https://doi.org/10.1039/d1py00837d

    Article  Google Scholar 

  58. Shahinpoor, M.: Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles - A review. Electrochim. Acta. 48, 2343–2353 (2003). https://doi.org/10.1016/S0013-4686(03)00224-X

    Article  Google Scholar 

  59. Shahinpoor, M.: Chapter 1. Fundamentals of Ionic Polymer Metal Composites (IPMCs). In: RSC Smart Materials. pp. 1–60. Royal Society of Chemistry (2015)

  60. Wang, W., Yu, C.Y., Abrego Serrano, P.A., Ahn, S.H.: Shape Memory Alloy-Based Soft Finger with Changeable Bending Length Using Targeted Variable Stiffness. Soft Robot. 7, 283–291 (2020). https://doi.org/10.1089/soro.2018.0166

    Article  Google Scholar 

  61. Liu, M., Hao, L., Zhang, W., Zhao, Z.: A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. Int. J. Adv. Robot. Syst. 17, 172988142090781 (2020). https://doi.org/10.1177/1729881420907813

    Article  Google Scholar 

  62. Shintake, J., Schubert, B., Rosset, S., Shea, H., Floreano, D.: Variable stiffness actuator for soft robotics using dielectric elastomer and low-melting-point alloy. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1097–1102. IEEE, Hamburg, Germany (2015)

  63. Peters, J., Nolan, E., Wiese, M., Miodownik, M., Spurgeon, S., Arezzo, A., Raatz, A., Wurdemann, H.A.: Actuation and stiffening in fluid-driven soft robots using low-melting-point material. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 4692–4698. IEEE, Macau, China (2019)

  64. Fujita, M., Ikeda, S., Fujimoto, T., Shimizu, T., Ikemoto, S., Miyamoto, T.: Development of universal vacuum gripper for wall-climbing robot. Adv. Robot. 32, 283–296 (2018). https://doi.org/10.1080/01691864.2018.1447238

    Article  Google Scholar 

  65. Fujita, M., Tadakuma, K., Komatsu, H., Takane, E., Nomura, A., Ichimura, T., Konyo, M., Tadokoro, S.: Jamming layered membrane gripper mechanism for grasping differently shaped-objects without excessive pushing force for search and rescue missions. Adv. Robot. 32, 590–604 (2018). https://doi.org/10.1080/01691864.2018.1451368

    Article  Google Scholar 

  66. Mizushima, K., Oku, T., Suzuki, Y., Tsuji, T., Watanabe, T.: Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft). pp. 376–381. IEEE, Livorno, Italy (2018)

  67. D’Avella, S., Tripicchio, P., Avizzano, C.A.: A study on picking objects in cluttered environments: Exploiting depth features for a custom low-cost universal jamming gripper. Robot. Comput. Integr. Manuf. 63, 101888 (2020). https://doi.org/10.1016/j.rcim.2019.101888

    Article  Google Scholar 

  68. Cianchetti, M., Ranzani, T., Gerboni, G., De Falco, I., Laschi, C., Menciassi, A.: STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3576–3581. IEEE, Tokyo, Japan (2013)

  69. Jiang, P., Yang, Y., Chen, M.Z.Q., Chen, Y.: A variable stiffness gripper based on differential drive particle jamming. Bioinspir. Biomim. 14, 036009 (2019). https://doi.org/10.1088/1748-3190/ab04d1

    Article  Google Scholar 

  70. Valenzuela-Coloma, H.-R., Lau-Cortes, Y., Fuentes-Romero, R.-E., Zagal, J.C., Mendoza-Garcia, R.-F.: Mentaca: An universal jamming gripper on wheels. In: 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). pp. 817–823. IEEE, Santiago, Chile (2015)

  71. Steltz, E., Mozeika, A., Rembisz, J., Corson, N., Jaeger, H.M.: Jamming as an enabling technology for soft robotics. In: Bar-Cohen, Y. (ed.) Electroactive Polymer Actuators and Devices (EAPAD) 2010. p. 764225 (2010)

  72. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107, 18809–18814 (2010). https://doi.org/10.1073/pnas.1003250107

    Article  Google Scholar 

  73. Licht, S., Collins, E., Ballat-Durand, D., Lopes-Mendes, M.: Universal jamming grippers for deep-sea manipulation. In: OCEANS 2016 MTS/IEEE Monterey. pp. 1–5. IEEE, Monterey, CA, USA (2016)

  74. Li, Y., Chen, Y., Yang, Y., Wei, Y.: Passive Particle Jamming and Its Stiffening of Soft Robotic Grippers. IEEE Trans. Robot. 33, 446–455 (2017). https://doi.org/10.1109/TRO.2016.2636899

    Article  Google Scholar 

  75. Licht, S., Collins, E., Mendes, M.L., Baxter, C.: Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools. Soft Robot. 4, 305–316 (2017). https://doi.org/10.1089/soro.2017.0028

    Article  Google Scholar 

  76. Li, Y., Chen, Y., Li, Y.: Distributed design of passive particle jamming based soft grippers. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft). pp. 547–552. IEEE, Livorno, Italy (2018)

  77. Licht, S., Collins, E., Badlissi, G., Rizzo, D.: A Partially Filled Jamming Gripper for Underwater Recovery of Objects Resting on Soft Surfaces. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 6461–6468. IEEE, Madrid, Spain (2018)

  78. Li, Y., Chen, Y., Yang, Y., Li, Y.: Soft Robotic Grippers Based on Particle Transmission. IEEE/ASME Trans. Mechatronics. 24, 969–978 (2019). https://doi.org/10.1109/TMECH.2019.2907045

    Article  Google Scholar 

  79. Yang, Y., Zhang, Y., Kan, Z., Zeng, J., Wang, M.Y.: Hybrid Jamming for Bioinspired Soft Robotic Fingers. Soft Robot. 7, 292–308 (2020). https://doi.org/10.1089/soro.2019.0093

    Article  Google Scholar 

  80. Jiang, A., Ranzani, T., Gerboni, G., Lekstutyte, L., Althoefer, K., Dasgupta, P., Nanayakkara, T.: Robotic Granular Jamming: Does the Membrane Matter? Soft Robot. 1, 192–201 (2014). https://doi.org/10.1089/soro.2014.0002

    Article  Google Scholar 

  81. Wall, V., Deimel, R., Brock, O.: Selective stiffening of soft actuators based on jamming. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 252–257. IEEE, Seattle, WA, USA (2015)

  82. Ranzani, T., Gerboni, G., Cianchetti, M., Menciassi, A.: A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10, 035008 (2015). https://doi.org/10.1088/1748-3190/10/3/035008

    Article  Google Scholar 

  83. Cavallo, A., Brancadoro, M., Tognarelli, S., Menciassi, A.: A Soft Retraction System for Surgery Based on Ferromagnetic Materials and Granular Jamming. Soft Robot. 6, 161–173 (2019). https://doi.org/10.1089/soro.2018.0014

    Article  Google Scholar 

  84. Hauser, S., Mutlu, M., Freundler, F., Ijspeert, A.: Stiffness Variability in Jamming of Compliant Granules and a Case Study Application in Climbing Vertical Shafts. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 1559–1566. IEEE, Brisbane, QLD, Australia (2018)

  85. Chopra, S., Tolley, M.T., Gravish, N.: Granular Jamming Feet Enable Improved Foot-Ground Interactions for Robot Mobility on Deformable Ground. IEEE Robot. Autom. Lett. 5, 3975–3981 (2020). https://doi.org/10.1109/LRA.2020.2982361

    Article  Google Scholar 

  86. Amend, J.R., Brown, E., Rodenberg, N., Jaeger, H.M., Lipson, H.: A Positive Pressure Universal Gripper Based on the Jamming of Granular Material. IEEE Trans. Robot. 28, 341–350 (2012). https://doi.org/10.1109/TRO.2011.2171093

    Article  Google Scholar 

  87. Miao, Y., Dong, W., Du, Z.: Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators. In: IOP Conference Series: Materials Science and Engineering. p. 012013. , Tianjin, China (2017)

  88. Cheng, N.G., Lobovsky, M.B., Keating, S.J., Setapen, A.M., Gero, K.I., Hosoi, A.E., Iagnemma, K.D.: Design and Analysis of a Robust, Low-cost, Highly Articulated manipulator enabled by jamming of granular media. In: 2012 IEEE International Conference on Robotics and Automation. pp. 4328–4333. IEEE, Saint Paul, MN, USA (2012)

  89. Kapadia, J., Yim, M.: Design and performance of nubbed fluidizing jamming grippers. In: 2012 IEEE International Conference on Robotics and Automation. pp. 5301–5306. IEEE, Saint Paul, MN, USA (2012)

  90. Jiang, Y., Amend, J.R., Lipson, H., Saxena, A.: Learning hardware agnostic grasps for a universal jamming gripper. In: 2012 IEEE International Conference on Robotics and Automation. pp. 2385–2391. IEEE, Saint Paul, MN, USA (2012)

  91. Cheng, N., Amend, J., Farrell, T., Latour, D., Martinez, C., Johansson, J., McNicoll, A., Wartenberg, M., Naseef, S., Hanson, W., Culley, W.: Prosthetic Jamming Terminal Device: A Case Study of Untethered Soft Robotics. Soft Robot. 3, 205–212 (2016). https://doi.org/10.1089/soro.2016.0017

    Article  Google Scholar 

  92. Harada, K., Nagata, K., Rojas, J., Ramirez-Alpizar, I.G., Wan, W., Onda, H., Tsuji, T.: Proposal of a shape adaptive gripper for robotic assembly tasks. Adv. Robot. 30, 1186–1198 (2016). https://doi.org/10.1080/01691864.2016.1209431

    Article  Google Scholar 

  93. Fujita, M., Tadakuma, K., Takane, E., Ichimura, T., Komatsu, H., Nomura, A., Konyo, M., Tadokoro, S.: Variable inner volume mechanism for soft and robust gripping — Improvement of gripping performance for large-object gripping. In: 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). pp. 390–395. IEEE, Lausanne, Switzerland (2016)

  94. Robertson, M.A., Paik, J.: New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Sci. Robot. 2, eaan6357 (2017). https://doi.org/10.1126/scirobotics.aan6357

  95. Jiang, A., Xynogalas, G., Dasgupta, P., Althoefer, K., Nanayakkara, T.: Design of a variable stiffness flexible manipulator with composite granular jamming and membrane coupling. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 2922–2927. IEEE, Vilamoura-Algarve, Portugal (2012)

  96. Athanassiadis, A.G., Miskin, M.Z., Kaplan, P., Rodenberg, N., Lee, S.H., Merritt, J., Brown, E., Amend, J., Lipson, H., Jaeger, H.M.: Particle shape effects on the stress response of granular packings. Soft Matter 10, 48–59 (2014). https://doi.org/10.1039/C3SM52047A

    Article  Google Scholar 

  97. Wei, Y., Chen, Y., Yang, Y., Li, Y.: A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming. Mechatronics 33, 84–92 (2016). https://doi.org/10.1016/j.mechatronics.2015.11.008

    Article  Google Scholar 

  98. A. Jiang, E. Secco, H. Wurdemann, T. Nanayakkara, K. Althoefer, P.D.: Stiffness-controllable octopus-like robot arm for minimally invasive surgery. 3rd Jt. Work. New Technol. Comput. Assist. Surg. (CRAS 2013) Verona, Italy. (2013)

  99. Zhao, Y., Shan, Y., Zhang, J., Guo, K., Qi, L., Han, L., Yu, H.: A soft continuum robot, with a large variable-stiffness range, based on jamming. Bioinspir. Biomim. 14, 066007 (2019). https://doi.org/10.1088/1748-3190/ab3d1b

    Article  Google Scholar 

  100. Zubrycki, I., Granosik, G.: Novel Haptic Device Using Jamming Principle for Providing Kinaesthetic Feedback in Glove-Based Control Interface. J. Intell. Robot. Syst. 85, 413–429 (2017). https://doi.org/10.1007/s10846-016-0392-6

    Article  Google Scholar 

  101. Hauser, S., Eckert, P., Tuleu, A., Ijspeert, A.: Friction and damping of a compliant foot based on granular jamming for legged robots. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). pp. 1160–1165. IEEE, Singapore (2016)

  102. Hauser, S., Mutlu, M., Banzet, P., Ijspeert, A.J.: Compliant universal grippers as adaptive feet in legged robots. Adv. Robot. 32, 825–836 (2018). https://doi.org/10.1080/01691864.2018.1496851

    Article  Google Scholar 

  103. Al Abeach, L., Nefti-Meziani, S., Theodoridis, T., Davis, S.: A Variable Stiffness Soft Gripper Using Granular Jamming and Biologically Inspired Pneumatic Muscles. J. Bionic Eng. 15, 236–246 (2018). https://doi.org/10.1007/s42235-018-0018-8

    Article  Google Scholar 

  104. Thompson-Bean, E., Steiner, O., McDaid, A.: A soft robotic exoskeleton utilizing granular jamming. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). pp. 165–170. IEEE, Busan, Korea (South) (2015)

  105. Tabata, O., Konishi, S., Cusin, P., Ito, Y., Kawai, F., Hirai, S., Kawamura, S.: Micro fabricated tunable bending stiffness devices. Sensors Actuators, A Phys. 89, 119–123 (2001). https://doi.org/10.1016/S0924-4247(00)00538-0

    Article  Google Scholar 

  106. Kawamura, S., Yamamoto, T., Ishida, D., Ogata, T., Nakayama, Y., Tabata, O., Sugiyama, S.: Development of passive elements with variable mechanical impedance for wearable robots. In: Proceedings - IEEE International Conference on Robotics and Automation. pp. 248–253. IEEE, Washington, DC, USA (2002)

  107. Henke, M., Sorber, J., Gerlach, G.: Multi-layer beam with variable stiffness based on electroactive polymers. In: Bar-Cohen, Y. (ed.) Electroactive Polymer Actuators and Devices (EAPAD) 2012. p. 83401P. SPIE, San Diego, California, United States (2012)

  108. Bureau, M., Keller, T., Perry, J., Velik, R., Veneman, J.F.: Variable Stiffness Structure for limb attachment. In: 2011 IEEE International Conference on Rehabilitation Robotics. pp. 1–4. IEEE, Zurich, Switzerland (2011)

  109. Kim, Y.J., Cheng, S., Kim, S., Iagnemma, K.: A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Robot. 29, 1031–1042 (2013). https://doi.org/10.1109/TRO.2013.2256313

    Article  Google Scholar 

  110. Ou, J., Yao, L., Tauber, D., Steimle, J., Niiyama, R., Ishii, H.: JamSheets: Thin interfaces with tunable stiffness enabled by layer jamming. In: Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction - TEI ’14. pp. 65–72. ACM Press, New York, New York, USA (2013)

  111. Narang, Y.S., Degirmenci, A., Vlassak, J.J., Howe, R.D.: Transforming the dynamic response of robotic structures and systems through laminar jamming. IEEE Robot. Autom. Lett. 3, 688–695 (2018). https://doi.org/10.1109/LRA.2017.2779802

    Article  Google Scholar 

  112. Aktas, B., Howe, R.D.: Flexure Mechanisms with Variable Stiffness and Damping Using Layer Jamming. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 7616–7621. IEEE, Macau, China (2019)

  113. Zhou, Y., Headings, L.M., Dapino, M.J.: Discrete Layer Jamming for Variable Stiffness Co-Robot Arms. J. Mech. Robot. 12, (2020). https://doi.org/10.1115/1.4044537

  114. Henke, M., Gerlach, G.: On a high-potential variable-stiffness device. Microsyst. Technol. 20, 599–606 (2014). https://doi.org/10.1007/s00542-013-1995-5

    Article  Google Scholar 

  115. Choi, Y.T., Hartzell, C.M., Leps, T., Wereley, N.M.: Gripping characteristics of an electromagnetically activated magnetorheological fluid-based gripper. AIP Adv. 8, 056701 (2018). https://doi.org/10.1063/1.5006094

    Article  Google Scholar 

  116. Białek, M., Jędryczka, C., Milecki, A.: Investigation of thermoplastic polyurethane finger cushion with magnetorheological fluid for soft-rigid gripper. Energies. 14, (2021). https://doi.org/10.3390/en14206541

  117. Guo, J., Bamber, T., Hovell, T., Chamberlain, M., Justham, L., Jackson, M.: Geometric Optimisation of Electroadhesive Actuators Based on 3D Electrostatic Simulation and its Experimental Verification. IFAC-PapersOnLine. 49, 309–315 (2016). https://doi.org/10.1016/j.ifacol.2016.10.574

    Article  MathSciNet  Google Scholar 

  118. Yatsuzuka, K., Hatakeyama, F., Asano, K., Aonuma, S.: Fundamental characteristics of electrostatic wafer chuck with insulating sealant. IEEE Trans. Ind. Appl. 36, 510–516 (2000). https://doi.org/10.1109/28.833768

    Article  Google Scholar 

  119. Higham, T.E., Russell, A.P., Niewiarowski, P.H., Wright, A., Speck, T.: The Ecomechanics of Gecko Adhesion: Natural Surface Topography, Evolution, and Biomimetics. Integr. Comp. Biol. 59, 148–167 (2019). https://doi.org/10.1093/icb/icz013

    Article  Google Scholar 

  120. Asano, K., Hatakeyama, F., Yatsuzuka, K.: Fundamental study of an electrostatic chuck for silicon wafer handling. IEEE Trans. Ind. Appl. 38, 840–845 (2002). https://doi.org/10.1109/TIA.2002.1003438

    Article  Google Scholar 

  121. Chen, R.: A Gecko-Inspired Electroadhesive Wall-Climbing Robot. IEEE Potentials 34, 15–19 (2015). https://doi.org/10.1109/MPOT.2014.2360020

    Article  Google Scholar 

  122. Owano, N.: Grabit uses electroadhesion for good grip on objects, https://techxplore.com/news/2014-10-grabit-electroadhesion-good.html

  123. Shintake, J., Rosset, S., Schubert, B., Floreano, D., Shea, H.: Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv. Mater. 28, 231–238 (2016). https://doi.org/10.1002/adma.201504264

    Article  Google Scholar 

  124. Monkman, G.J., Taylor, P.M., Farnworth, G.J.: PRINCIPLES OF ELECTROADHESION IN CLOTHING ROBOTICS. Int. J. Cloth. Sci. Technol. 1, 14–20 (1989). https://doi.org/10.1108/eb002951

    Article  Google Scholar 

  125. Zhou, M., Pesika, N., Zeng, H., Tian, Y., Israelachvili, J.: Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction. 1, 114–129 (2013). https://doi.org/10.1007/s40544-013-0011-5

    Article  Google Scholar 

  126. Aksak, B., Murphy, M.P., Sitti, M.: Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays. Langmuir 23, 3322–3332 (2007). https://doi.org/10.1021/la062697t

    Article  Google Scholar 

  127. Hawkes, E.W., Eason, E.V., Christensen, D.L., Cutkosky, M.R.: Human climbing with efficiently scaled gecko-inspired dry adhesives. J. R. Soc. Interface. 12, 20140675 (2015). https://doi.org/10.1098/rsif.2014.0675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kunal Singh: Conceptualization, Investigation, Formal analysis, Visualization, Writing—original draft, Writing – review editing; Shilpa Gupta: Conceptualization, Formal analysis, Writing – original draft, Writing – review editing, Supervision.

Corresponding author

Correspondence to Kunal Singh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Gupta, S. Controlled actuation, adhesion, and stiffness in soft robots: A review. J Intell Robot Syst 106, 59 (2022). https://doi.org/10.1007/s10846-022-01754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01754-6

Keywords

Navigation