Skip to main content
Log in

Bionic Fish Trajectory Tracking Based on a CPG and Model Predictive Control

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Bionic fish have received widespread attention due to their high mobility, high concealment and high propulsion efficiency. Trajectory tracking and tracking accuracy are the main challenges in controlling the motion of bionic fish. To realize the trajectory tracking control of bionic fish, in this paper, nonlinear dynamics model of bionic fish is established by the Newton-Euler equation and Denavit-Hartenberg (D-H) coordinate transformation, and it is reasonably simplified. Then, a model predictive controller is established based on the dynamic model, and combined with a central pattern generator (CPG) network, a CPG-based model predictive controller (MPC-CPG controller) is proposed. Finally, simulations and experiments are carried out on the bionic fish, tracking the circular trajectory and straight trajectory. Experiments show that under the condition of initial error, the MPC-CPG controller can quickly eliminate the position error and heading angle error of the bionic fish, and track to the reference trajectory. For the tracking circular trajectory and straight trajectory, the position errors are kept at −6.9% ~ 14.9% and − 8.6% ~ 8.6% of the body length, respectively, and the heading angle errors are always kept at −4.76° ~ 4.73° and − 3.24° ~ 3.55°, respectively. Experiments verify the effectiveness of the proposed MPC-CPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katzschmann, R.K., Delpreto, J.J., Maccurdy, R., Rus, D.L.: Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3(16), eaar3449 (2018)

    Article  Google Scholar 

  2. Yu, J., Yuan, J., Wu, Z., Min, T.: Data-driven dynamic modeling for a swimming robotic fish. IEEE Trans. Ind. Electron. 63(9), 5632–5640 (2016). https://doi.org/10.1109/TIE.2016.2564338

    Article  Google Scholar 

  3. Wang, J., Wu, Z., Tan, M., Yu, J.: 3-D path planning with multiple motions for a gliding robotic dolphin. IEEE Trans. Syst., Man, Cybern., Syst. 51(5), 2904–2915 (2019)

    Article  Google Scholar 

  4. Dong, H.J., Wu, Z.X., Chen, D., Tan, M., Yu, J.Z.: Development of a whale shark-inspired gliding robotic fish with high maneuverability. IEEE-ASME Trans. Mechatron. 25(6), 2824–2834 (2020)

    Article  Google Scholar 

  5. Fu, S., Wei, F., Yin, C., Yao, L., Wang, Y.: Biomimetic soft micro-swimmers: from actuation mechanisms to applications. Biomed. Microdevices. 23(1), 6 (2021)

    Article  Google Scholar 

  6. Duraisamy, P., Sidharthan, R.K., Santhanakrishnan, M.N.: Design, modeling, and control of biomimetic fish robot: a review. J. Bionic Eng. 16(6), 967–993 (2019)

    Article  Google Scholar 

  7. Xie, F., Zuo, Q., Chen, Q., Fang, H., He, K., Du, R.: Designs of the Biomimetic Robotic Fishes Performing Body and/or Caudal Fin (BCF) Swimming Locomotion: A Review. J. Intell. Robot. Syst. 102(1), (2021). https://doi.org/10.1007/s10846-021-01379-1

  8. Fu, S., Wei, F., Yin, C., Yao, L., Wang, Y.: Biomimetic soft micro-swimmers: from actuation mechanisms to applications. Biomed. Microdevices. 23(6), 6 (2021)

    Article  Google Scholar 

  9. Yaowei, W., Zhijian, J., Haichuan, Z.: J. Intell. Syst. 9(3), 276–284 (2014)

    Google Scholar 

  10. Chen, Z.: Pneumatic Net Due Fish Body Wave Motion and the Research of Actuator Implementation [D]. Hunan University, (2020)

  11. Yu, J.Z., Li, W., Ren, Z.Y.: A survey on fabrication, control, and hydrodynamic function of biomimetic robotic fish. Sci China Technol Sci. 60(9), 1365–1380 (2017)

    Article  Google Scholar 

  12. Deniz, K., Ozmen, K.G., Guoyuan, L., Cafer, B., Mustafa, A., Hakan, A.Z.: Locomotion control of a biomimetic robotic fish based on closed loop sensory feedback CPG model. J. Mar. Eng. Technol. 20(2), 125–137 (2021)

    Article  Google Scholar 

  13. Cafer, B., Gonca, O.K., Deniz, K., Hakan, A.Z., Mustafa, A.: CPG-based autonomous swimming control for multi-tasks of a biomimetic robotic fish [J]. Ocean Eng. 189(C), 106334 (2019). https://doi.org/10.1016/j.oceaneng.2019.106334

    Article  Google Scholar 

  14. Knuesel, J., Crespi, A., Cabelguen, J.-M., Ijspeert, A.J., Ryczko, D.: Reproducing Five Motor Behaviors in a Salamander Robot With Virtual Muscles and a Distributed CPG Controller Regulated by Drive Signals and Proprioceptive Feedback. Front. Neurorobot. 14, 604426 (2020)

    Article  Google Scholar 

  15. Chen, J.Y., Yin, B., Wang, C.C., Xie, F.R., Du, R.X., Zhong, Y.: Bioinspired closed-loop CPG-based control of a robot fish for obstacle avoidance and direction tracking. J. Bionic Eng. 18(1), 171–183 (2021). https://doi.org/10.1007/s42235-021-0008-0

    Article  Google Scholar 

  16. Cao, Y., Lu, Y., Cai, Y.R., Bi, S.S., Pan, G.: CPG-fuzzy-based control of a cownose-ray-like fish robot. Ind. Robot: The International Journal of Robotics Research and Application. 46(6), 779–791 (2019). https://doi.org/10.1108/IR-02-2019-0029

    Article  Google Scholar 

  17. Wang, G., Chen, X., Han, S.-K.: Central pattern generator and feedforward neural network-based self-adaptive gait control for a crab-like robot locomoting on complex terrain under two reflex mechanisms [J]. Int. J. Adv. Robot. Syst. 14(4), (2017). https://doi.org/10.1177/1729881417723440

  18. Bing, Z.S., Cheng, L., Chen, G., Rohrbein, F., Huang, K., Knoll, A.: Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot. Bioinspir. Biomim. 12(3), 1–16 (2017). https://doi.org/10.1088/1748-3190/aa644c

    Article  Google Scholar 

  19. Yu, J., Wu, Z., Wang, M., Tan, M.: CPG network optimization for a biomimetic robotic fish via PSO. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1962–1968 (2016). https://doi.org/10.1109/TNNLS.2015.2459913

    Article  MathSciNet  Google Scholar 

  20. Wang, M., Dong, H., Li, X., et al.: Control and Optimization of a Bionic Robotic Fish Through a Combination of CPG model and PSO [J]. Neurocomputing. 14(4), 144152 (2019)

    Google Scholar 

  21. Wang, Y., Xue, X.H., Chen, B.F.: Matsuoka's CPG with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Trans. Cybern. 50(2), 613–626 (2020). https://doi.org/10.1109/TCYB.2018.2870145

    Article  MathSciNet  Google Scholar 

  22. Yu, H., Guo, C., Yan, Z.: Globally finite-time stable three-dimensional trajectory tracking control of underactuated UUVs. Ocean Eng. 109, 106329 (2019)

    Article  Google Scholar 

  23. Yanbin, T.: Research on UUV Recovery Control Method of Moving Pedestal Based on Model Predictive Control [D]. Harbin engineering university, (2020)

  24. Yang, C., Yao, F., Zhang, M.: Adaptive Backstepping Terminal Sliding Mode Control Method Based on Recurrent Neural Networks for Autonomous Underwater Vehicle. Chin. J. Mech. Eng. 31(1), 110 (2018)

    Article  Google Scholar 

  25. Bing, S., Wenyang, G., Man, M., Zhu, D., Yang Simon, X.: Cascaded UUV trajectory tracking control based on model predictive and sliding mode control. J. Mar. Sci. Technol. Taiw. 25(6), 671–679 (2017)

    Google Scholar 

  26. Wang, M., Yanlu, Z., Dong, H.: Trajectory tracking control of a bionic robotic fish based on iterative learning. Sci. China Inf. Sci. 63(7), 170202 (2020). https://doi.org/10.1007/s11432-019-2760-5

    Article  MathSciNet  Google Scholar 

  27. Zheng, X.W., Chen, H., Jiao, O.Y., Xiong, M.L., Zhang, W., Xie, G.M.: Model Predictive Tracking Control Design for a Robotic Fish with Controllable Barycentre. 45th Annual Conference of the IEEE Industrial Electronics Society (IECON), 5237–5242 (2019)

  28. Bruggemann, S., Possieri, C.: On the use of difference of log-sum-Exp neural networks to solve data-driven model predictive control tracking problems. IEEE Control Syst. Lett. 5(4), 1267–1272 (2021)

    Article  MathSciNet  Google Scholar 

  29. Wang, W., Dai, X., Li, L., Gheneti, B.H., Ding, Y., Yu, J.Z., Xie, G.M.: Threedimensional modeling of a fin-actuated robotic fish with multimodal swimming. IEEE/ASME Trans. Mechatron. 23(4), 1641–1652 (2018)

    Article  Google Scholar 

  30. Tian, R.Y., Li, L., Wang, W., Chang, X.H., Ravi, S., Xie, G.M.: CFD based parameter tuning for motion control of robotic fish. Bioinspir. Biomim. 15(2), 026008 (2020). https://doi.org/10.1088/1748-3190/ab6b6c

    Article  Google Scholar 

  31. Yang, Y., Wang, J., Wu, Z., Yu, J.: Fault tolerant control method for bionic robotic fish driven by CPG [J]. Engineering. 4(6), 253–269 (2018)

    Google Scholar 

  32. Korkmaz, N., Öztürk, İ., Kiliç, R.: Modeling, simulation, and implementation issues of CPGs for neuromorphic engineering applications[J]. Comput. Appl. Eng. Educ. 26(4), 782–803 (2018)

    Article  Google Scholar 

  33. Zhao, J.X., Iwasaki, T.: CPG control for harmonic motion of assistive robot with human motor control identification. IEEE Trans. Control Syst. Technol. 28(4), 1323–1336 (2020)

    Article  Google Scholar 

  34. Lu, Q., Zhang, Z.C., Yue, C.: The programmable CPG model based on Matsuoka oscillator and its application to robot locomotion. Int. J. Model. Simul. Sci. Comput. 11(3), 2050018 (2020). https://doi.org/10.1142/S179396232050018X

    Article  Google Scholar 

  35. Wang, B.R., Zhang, K., Yang, X.F., Cui, X.H.: The gait planning of hexapod robot based on CPG with feedback. Int. J. Adv. Robot. Syst. 17(3), (2020). https://doi.org/10.1177/1729881420930503

  36. Shengbo, L., Wang, J., Keqiang, L.: Soft Constraint Linear Model Predictive Control System Stability Method[J]. J. Qing Univ. Nat. Sci. Ed. (11), 1848–1852 (2010)

  37. Suebsaiprom, P., Lin, C.-L.: Maneuverability modeling and trajectory tracking forfish robot. Control. Eng. Pract. 45, 22–36 (2015)

    Article  Google Scholar 

  38. Shin, K.J.: Robot fish tracking control using an optical flow object-detecting algorithm. IEIE Trans. Smart Process. Comput. 5(6), 375–382 (2016)

    Article  Google Scholar 

Download references

Code or Data Availability

Available.

Funding

This work was supported by National Natural Science Foundation of China (No.51679057), National Nature Science Foundation of China under Grant (No.51609046, E1102/52071108) and Defense Technology and Industry Agency stabilization Support Program (JCKYS2020SXJQR-04).

Author information

Authors and Affiliations

Authors

Contributions

Zheping Yan: Conceptualization, Methodology, Resources.

Haoyu Yang: Methodology, Validation, Writing - Original Draft.

Wei Zhang: Conceptualization, Resources.

Qingshuo Gong: Software, Validation, Visualization.

Fantai Lin: Software, Validation, Visualization.

Yu Zhang: Software, Validation, Visualization.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Ethics Approval

Approvals.

Consent to Participate

All the authors of this article agreed to participate.

Consent for Publication

All authors of this article agree to publish.

Conflicts of Interest/Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yang, H., Zhang, W. et al. Bionic Fish Trajectory Tracking Based on a CPG and Model Predictive Control. J Intell Robot Syst 105, 29 (2022). https://doi.org/10.1007/s10846-022-01644-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-022-01644-x

Keywords

Navigation