Skip to main content
Log in

Decentralized MPC for UAVs Formation Deployment and Reconfiguration with Multiple Outgoing Agents

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a new decentralized algorithm for the deployment and reconfiguration of a multi-agent formation in a convex bounded polygonal area when considering several outgoing agents. The system is deployed over a two-dimensional convex bounded area, each agent being driven by its own linear model predictive controller. At each time instant, the area is partitioned into Voronoi cells associated with each agent. Due to the movement of the agents, this partition is time-varying. The objective of the proposed algorithm is to drive the agents into a static configuration based on the Chebyshev center of each Voronoi cell. When some agents present a non-cooperating behavior (e.g. agents required for a different mission, faulty agents, etc.), they have to leave the formation by tracking a reference outside the system’s workspace. The outgoing agents and their objective positions partition the convex bounded polygonal area into working regions. Each remaining agent will track a new objective point allowing it to avoid the trajectory of the outgoing agents. The computation of this objective position is based on the agent’s safety region (i.e. the intersection of the contracted Voronoi cell and the contracted working region). When the outgoing agents have left the workspace, the remaining agents resume their deployment objective. Simulation results on a formation of a team of unmanned aerial vehicles are finally presented to validate the algorithm proposed in this paper when several agents leave the formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdolhosseini, M., Zhang, Y.M., Rabbath, C.A.: An efficient model predictive control scheme for an unmanned quadrotor helicopter. J. Intell. Robot. Syst. 70, 27–38 (2013)

    Article  Google Scholar 

  2. Beard, R.W., McLain, T.W., Nelson, D.B., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  3. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  Google Scholar 

  4. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Springer (2007)

  5. Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: IEEE International Conference on Robotics and Automation, vol. 5, pp. 4393–4398 (2004)

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

  7. Casbeer, D.W., Beard, R.W., McLain, T.W., Li, S.M., Mehra, R.K.: Forest fire monitoring with multiple small UAVs. In: American Control Conference, pp. 3530–3535 (2005)

  8. Chevet, T., Stoica Maniu, C., Vlad, C., Zhang, Y.M.: Voronoi-based UAVs formation deployment and reconfiguration using MPC techniques. In: 2018 International Conference on Unmanned Aircraft Systems, pp. 9–14 (2018)

  9. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  10. Eggleston, H.: Convexity. Cambridge University Press (1958)

  11. Gu, Y., Seanor, B., Campa, G., Napolitano, M.R., Rowe, L., Gururajan, S., Wan, S.: Design and flight testing evaluation of formation control laws. IEEE Trans. Control Syst. Technol. 14(6), 1105–1112 (2006)

    Article  Google Scholar 

  12. Hatleskog, J., Olaru, S., Hovd, M.: Voronoi-based deployment of multi-agent system. In: IEEE 57th Conference on Decision and Control, pp. 5403–5408 (2018)

  13. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-parametric toolbox 3.0. In: European Control Conference, pp. 502–510 (2013)

  14. Lai, L.C., Yang, C.C., Wu, C.J.: Time-optimal control of a hovering quad-rotor helicopter. J. Intell. Robot. Syst. 45, 115–135 (2006)

    Article  Google Scholar 

  15. Laliberte, A.S., Rango, A.: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 47(3), 761–770 (2009)

    Article  Google Scholar 

  16. Lozano, R.: Unmanned Aerial Vehicles: Embedded Control. Wiley (2013)

  17. Mattingley, J., Boyd, S.: CVXGEN: A code generator for embedded convex optimization. Optim. Eng. 13 (1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  18. Merino, L., Caballero, F., Martínez-de Dios, J.R., Maza, I., Ollero, A.: An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 65(1), 533–548 (2012)

    Article  Google Scholar 

  19. Moarref, M., Rodrigues, L.: An optimal control approach to decentralized energy-efficient coverage problems. 19th IFAC World Congress 47(3), 6038–6043 (2014)

    Google Scholar 

  20. Murray, R.M.: Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Measur. Control 129(5), 571–583 (2007)

    Article  Google Scholar 

  21. Nex, F., Remondino, F.: UAV for 3D mapping applications: A review. Appl. Geom. 6(1), 1–15 (2014)

    Article  Google Scholar 

  22. Nguyen, M.T., Rodrigues, L., Stoica Maniu, C., Olaru, S.: Discretized optimal control approach for dynamic multi-agent decentralized coverage. In: IEEE International Symposium on Intelligent Control, pp. 335–340 (2016)

  23. Nguyen, M.T., Stoica Maniu, C.: Voronoi based decentralized coverage problem: From optimal control to model predictive control. In: 24th Mediterranean Conference on Control and Automation, pp. 1307–1312 (2016)

  24. Nguyen, M.T., Stoica Maniu, C., Olaru, S.: Optimization-based control for multi-agent deployment via dynamic Voronoi partition. 20th IFAC World Congress 50(1), 1828–1833 (2017)

    Google Scholar 

  25. d’Oleire Oltmanns, S., Marzolff, I., Peter, K.D., Ries, J.B.: Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens. 4(11), 3390–3416 (2012)

    Article  Google Scholar 

  26. Papatheodorou, S., Tzes, A.: Cooperative visual convex area coverage using a tessellation-free strategy. In: IEEE 56th Conference on Decision and Control, pp. 4662–4667 (2017)

  27. Quintero, S.A.P., Copp, D.A., Hespanha, J.P.: Robust coordination of small UAVs for vision-based target tracking using output-feedback MPC with MHE. In: Cooperative Control of Multi-Agent Systems, pp. 51–83. Wiley-Blackwell (2017)

  28. Rinaldi, F., Chiesa, S., Quagliotti, F.: Linear quadratic control for quadrotors UAVs dynamics and formation flight. J. Intell. Robot. Syst. 70, 203–220 (2013)

    Article  Google Scholar 

  29. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1998)

  30. Sharifi, F., Chamseddine, A., Mahboubi, H., Zhang, Y.M., Aghdam, A.G.: A distributed deployment strategy for a network of cooperative autonomous vehicles. IEEE Trans. Control Syst. Technol. 23(2), 737–745 (2015)

    Article  Google Scholar 

  31. Sharifi, F., Mirzaei, M., Zhang, Y.M., Gordon, B.W.: Cooperative multi-vehicle search and coverage problem in an uncertain environment. Unmanned Syst. 3(1), 35–47 (2015)

    Article  Google Scholar 

  32. Sharifi, F., Zhang, Y.M., Aghdam, A.G.: A distributed deployment strategy for multi-agent systems subject to health degradation and communication delays. J. Intell. Robot. Syst. 73, 623–633 (2014)

    Article  Google Scholar 

  33. Siebert, S., Teizer, J.: Mobile 3D mapping for surveying earthwork projects using an unmanned aerial vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014)

    Article  Google Scholar 

  34. Singh, S.N., Pachter, M., Chandler, P., Banda, S., Rasmussen, S., Schumacher, C.: Input–output invertibility and sliding mode control for close formation flying of multiple UAVs. Int. J. Robust Nonlinear Control 10(10), 779–797 (2000)

    Article  MathSciNet  Google Scholar 

  35. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Wiley (2015)

  36. Stipanović, D.M., Inalhan, G., Teo, R., Tomlin, C.J.: Decentralized overlapping control of a formation of unmanned aerial vehicles. Automatica 40(8), 1285–1296 (2004)

    Article  MathSciNet  Google Scholar 

  37. Varga, A.: Solving Fault Diagnosis Problems. Springer (2017)

  38. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. für die reine und angewandte Mathematik 134, 198–287 (1908)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS’ LIA on Information, Learning and Control and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Chevet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: UAV Model

Appendix: UAV Model

The state-space model of the UAV is written by considering the notations from Section 2.2. The state-space model itself is derived from Lagrangian mechanics [5]:

$$ \begin{array}{@{}rcl@{}} \dot{x} & =& v_{x} \end{array} $$
(16)
$$ \begin{array}{@{}rcl@{}} \dot{y} & =& v_{y} \end{array} $$
(17)
$$ \begin{array}{@{}rcl@{}} \dot{z} & =& v_{z} \end{array} $$
(18)
$$ \begin{array}{@{}rcl@{}} \dot{\phi} & =& \omega_{x} + \left( \omega_{y}\sin\phi + \omega_{z}\cos\phi\right)\tan\theta \end{array} $$
(19)
$$ \begin{array}{@{}rcl@{}} \dot{\theta} & =& \omega_{y}\cos\phi - \omega_{z}\sin\phi \end{array} $$
(20)
$$ \begin{array}{@{}rcl@{}} \dot{\psi} & =& \omega_{y}\frac{\sin\phi}{\cos\theta} + \omega_{z}\frac{\cos\phi}{\cos\theta} \end{array} $$
(21)
$$ \begin{array}{@{}rcl@{}} \dot{v}_{x} & =& \frac{f_{t}}{m}\left( \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi\right) \end{array} $$
(22)
$$ \begin{array}{@{}rcl@{}} \dot{v}_{y} & =& \frac{f_{t}}{m}\left( \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi\right) \end{array} $$
(23)
$$ \begin{array}{@{}rcl@{}} \dot{v}_{z} & =& \frac{f_{t}}{m}\cos\phi\cos\theta - g \end{array} $$
(24)
$$ \begin{array}{@{}rcl@{}} \dot{\omega}_{x} & =& \frac{I_{y} - I_{z}}{I_{x}}\omega_{y}\omega_{z} + \frac{\tau_{x}}{I_{x}} \end{array} $$
(25)
$$ \begin{array}{@{}rcl@{}} \dot{\omega}_{y} & =& \frac{I_{z} - I_{x}}{I_{y}}\omega_{x}\omega_{z} + \frac{\tau_{y}}{I_{y}} \end{array} $$
(26)
$$ \begin{array}{@{}rcl@{}} \dot{\omega}_{z} & =& \frac{I_{x} - I_{y}}{I_{z}}\omega_{x}\omega_{y} + \frac{\tau_{z}}{I_{z}} \end{array} $$
(27)

where m is the UAV’s mass, Ix, Iy and Iz are the moments of inertia with respect to the axes xUAV, yUAV and zUAV illustrated in Fig. 1 and g is the gravitational acceleration. The numerical values of all the model parameters are presented in Table 1.

Table 1 Values of UAV model’s parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevet, T., Vlad, C., Maniu, C.S. et al. Decentralized MPC for UAVs Formation Deployment and Reconfiguration with Multiple Outgoing Agents. J Intell Robot Syst 97, 155–170 (2020). https://doi.org/10.1007/s10846-019-01025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-019-01025-x

Keywords

Navigation