Skip to main content
Log in

Design and Realization of the Claw Gripper System of a Climbing Robot

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Climbing robots are widely used to inspect smooth walls, such as glass curtain walls and ceramic tile surfaces. However, a good adsorption method for inspecting a cliff face and dusty high-altitude buildings with small-amplitude vibration has not been found. In this study, a new adsorption method using grasping claw grippers to adhere to rough walls is proposed and applied. A mechanical model for the interaction between the gripper and the uplifts on rough walls is also established to analyze the critical state of force balance of the gripper. In addition, MATLAB is used in a simulation, and an experimental prototype is designed to test the grasp stability of the gripper. Simulation and experiment results indicate that the gripper can adequately achieve grasping adsorption on a rough concrete wall. The findings provide a foundation for constructing a system for a rough-wall-climbing robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Elachachi, S.M., Breysse, D., Yotte, S., Cremona, C.: A Probabilistic multi-scale time dependent model for corroded structural suspension cables. Probab. Eng. Mech. 21, 235–245 (2006)

    Article  Google Scholar 

  2. Mehrabi, A.B., Asce, M., Ligozio, C.A., Ciolko, A.T., Wyatt, S.T.: Evaluation, rehabilitation planning, and stay-cable replacement design for the hale Boggs bridge in Luling, Louisiana. J. Bridg. Eng. 15, 364–372 (2010)

    Article  Google Scholar 

  3. Spenko, M.J., Haynes, G.C., Saunders, JA.: Biologically Inspired Climbing with a Hexapedal Robot. J. Field Rob. 25, 223–242 (2008)

    Article  Google Scholar 

  4. Haynes, G.C., Khripin, A., Lynch, G., Amory, J., Saunders, A., Koditschek, D.E.: Rapid Pole Climbing with a Quadrupedal Robot In: IEEE International Conference on Robotics and Automation(ICRA2009), pp 2767–2772. Kobe, Japan (Rizzi, AA)

  5. Daltorio, K.A., Wei, T.E., Horchler, A.D., et al.: Mini-whegs TM climbs steep surfaces using insect-inspired attachment mechanisms [J]. Int. J. Robot. Res. 28(1), 285–302 (2009)

    Article  Google Scholar 

  6. Lynch, G.A., Clark, J.E., Lin, P.C., Koditschek, D.E.: A bioinspired dynamical vertical climbing robot [J]. Int. J. Robot. Res. 31, 974–996 (2012)

    Article  Google Scholar 

  7. Bartsch, S., Birnschein, T., Rommermann, M., Hilljegerdes, J., Kuhn, D.: Development of the Six-Legged Walking and Climbing Robot SpaceClimber. J. Field Rob. 29, 506–532 (2012)

    Article  Google Scholar 

  8. Sintov, A., Avramovich, T., Shapiro, A.: Design and motion planning of an autonomous climbing robot with claws. Robot. Auton. Syst. 59, 1008–1019 (2011)

    Article  Google Scholar 

  9. Lam, T.L., Xu, YS.: Motion planning for tree climbing with inchworm-like robots. J. Field Rob. 30, 87–101 (2013)

    Article  Google Scholar 

  10. Lam, T.L., Xu, YS.: Biologically inspired tree-climbing robot with continuum maneuvering mechanism. J. Field Rob. 29, 843–860 (2012)

    Article  Google Scholar 

  11. Asbeck, A.T., Kim, S., Cutkosky, M.R., Provancher, W.R., Lanzetta, M.: Scaling hard vertical surfaces with compliant microspine array. Int. J. Robot. Res. 25, 1165–1179 (2006)

    Article  Google Scholar 

  12. Hawkes, E.W., Eason, E.V., Asbeck, A.T., Cutkosky, M.R.: The Gecko’s Toe: Scaling Directional Adhesives for Climbing Applications. IEEE/ASME Trans. Mechatron. 18, 518–526 (2013)

    Article  Google Scholar 

  13. Gao, X.S., Xu, D.G., Wang, Y.: Multifunctional robot to maintain boiler water-cooling tubes [J]. Robotica 27(7), 941–948 (2009)

    Article  Google Scholar 

  14. Tavakoli, M., Viegas, C., Marques, L.: OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures [J]. Robot. Auton. Syst. 61(10), 997–1007 (2013)

    Article  Google Scholar 

  15. Li, J., Gao, X., Fan, N., Li, K., Jiang, Z.: Adsorption performance of sliding wall climbing robot [J]. Chinese J. Mech. Eng. 23(7), 733–741 (2010)

    Article  Google Scholar 

  16. Hu, B.S., Zhao, Y.Z., Fu, Z.: A miniature wall climbing robot with biomechanical suction cups [J]. Industrial Robot: An Inter. J. 36(7), 551–561 (2009)

    Article  Google Scholar 

  17. Koo, I.M., Trong, T.D., Lee, Y.H., Moon, H., Koo, J., Park, S.K., Choi, HR.: Development of Wall Climbing Robot System by Using Impeller Type Adhesion Mechanism [J]. J. Intell. Robot. Syst. 72(1), 57–72 (2013)

    Article  Google Scholar 

  18. Guan, X.W., Zhang, H., Ji, A.H., Dai, ZD.: Development of claw-inspired foot structure for wall-climbing robot. Mech. Elect. Eng. Mag. 26, 1–4 (2009)

    Google Scholar 

  19. Liu, Y.W., Sun, S.M., Wu, X., Mei, T.: A Wheeled Wall-Climbing Robot with Bio-Inspired Spine Mechanisms J. Bionic Eng. 13 17–28 (2015)

  20. Chen, D.L., Zhang, Q., Wang, L.Q., Zu, YS.: Design and realization of a kind of rough wall climbing robot. J. Harbin Eng. Univ. 33, 209–213 (2012)

    Google Scholar 

  21. Jiang, L., Guan, Y.S., Cai, C.W.: Gait Analysis of a Novel Biomimetic Climbing Robot. J. Mech. Eng. 46, 17–22 (2010)

    Article  Google Scholar 

  22. Guan, Y.S., Zhu, H.F., Wu, W.Q.: A Modular Biped Wall-Climbing Robot with High Mobility and Manipulating Function. IEEE/ASME Trans. Mechatron. 18, 1787–1798 (2013)

    Article  Google Scholar 

  23. Chen, D.C., Yin, J.M., Zhao, K., Zheng, W.J., Wang, T.M.: Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping. J. Bionic Eng. 8, 429–439 (2011)

    Article  Google Scholar 

  24. Unver, O., Tankbot, S.M.: A Palm-size, Tank-like Climbing Robot using Soft Elastomer Adhesive Treads. Int. J. Robot. Res. 29, 1761–1777 (2010)

    Article  Google Scholar 

  25. Murphy, M.P., Kute, C., Menguc, Y., Sitti, M., Waalbot, I.I.: Adhesion Recovery and Improved Performance of a Climbing Robot using Fibrillar Adhesives. Int. J. Robot. Res. 30, 118–133 (2011)

    Article  Google Scholar 

  26. Li, Y.S., Ahmed, A., Sameoto, D., Menon, C.: Abigaille II: toward the development of a spider-inspired climbing robot. Robotica 30, 79–89 (2012)

    Article  Google Scholar 

  27. Henrey, M., Ahmed, A., Boscariol, P., Shannon, L., Menon, C.: Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces. J. Bionic Eng. 11, 1–17 (2014)

    Article  Google Scholar 

  28. Boscariol, P., Henrey, M.A., Li, Y.S., Menon, C.: Optimal Gait for Bioinspired Climbing Robots Using Dry Adhesion: A Quasi-Static Investigation. J. Bionic Eng. 10, 1–11 (2013)

    Article  Google Scholar 

  29. Parness, A., Frost, M., Thatte, N.: Gravity-independent Rock-climbing Robot and a Sample Acquisition Tool with Microspine Grippers [J]. J. Field Rob. 30(7), 897–915 (2013)

    Article  Google Scholar 

  30. Xu, F.Y., Wang, X.S., Jiang, G.P.: Design and Analysis of a Wall-Climbing Robot Based on a Mechanism Utilizing Hook-Like Claws [J]. Int. J. Adv. Robot. Syst. 9(261), 1–12 (2012)

    Article  Google Scholar 

  31. Xu, F.Y., Wang, X.S., Jiang, G.P.: Initial Design and Analysis of a Rough Concrete Building-climbing Robot Based on Biomimetic Grip Claws [C] IEEE International Conference on Robotics and Biomimetics, ROBIO, pp 408–413. Shengzhen, China (2013)

    Google Scholar 

  32. Bretl, T., Rock, S.M., Latombe, J.C., Kennedy, B., Aghazarian, H.: Free-climbing with a multi-use Robot In: 9th Int. Symp. on Experimental Robotics, Singapore, pp 18–21 (2004)

    Google Scholar 

  33. Liu, R., Chen, R., Shen, H.: Wall Climbing Robot Using Electrostatic Adhesion Force Generated by Flexible Interdigital Electrodes. Int. J. Adv. Robot. Syst. 10, 1–9 (2013)

    Article  Google Scholar 

  34. Provancher, W.R., Jensen, S.S., Fehlberg, M.A.: ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot. IEEE/ASME Trans. Mechatron. 16, 897–906 (2011)

    Article  Google Scholar 

  35. Schempf, H., Mutschler, E., Gavaert, A., Skoptsov, G., Crowley, W.: Visual and Nondestructive Evaluation Inspection of Live Gas Mains Using the Explorer TM Family of Pipe Robots. J. Field Rob. 27, 217–249 (2010)

    Google Scholar 

  36. Amirpasha, P., Parviz, S., Jue, L.: A New Self-Loading Locomotion Mechanism for Wall Climbing Robots Employing Biomimetic Adhesives. J. Bionic Eng. 10, 12–18 (2013)

    Article  Google Scholar 

  37. He, B., Wang, Z.P., Li, M.H., Wang, K., Shen, R.J., Hu, SQ.: Wet Adhesion Inspired Bionic Climbing Robot. IEEE/ASME Trans. Mechatron. 19, 312–320 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China(51005046), Natural Science Foundation of Jiangsu Province(BK20151505), and Natural scientific research fund of Nanjing University of posts and telecommunications(NY217071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Wang, B., Shen, J. et al. Design and Realization of the Claw Gripper System of a Climbing Robot. J Intell Robot Syst 89, 301–317 (2018). https://doi.org/10.1007/s10846-017-0552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0552-3

Keywords

Navigation