Abstract
This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Asemani, M.H., Majd, V.J.: A robust H ∞ observer-based controller design for uncertain T-S fuzzy systems with unknown premise variables via LMI. Fuzzy Sets Syst. 212, 21–40 (2012)
Briat, C.: Linear Parameter-Varying and Time-Delay Systems - Analysis, Observation, Filtering & Control, Volume 3 of Advances on Delays and Dynamics. Springer-Verlag, Heidelberg (2014)
Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Robust fault diagnosis for quadrotor UAVs using adaptive thau observer. J. Intell. Robot. Syst. 73(1–4), 573–588 (2014)
Chadli, M., Abdo, A., Ding, S.X.: Fault detection filter for discrete-time Takagi-Sugeno fuzzy system. Automatica 49(7), 1996–2005 (2013)
Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi-Sugeno. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)
Chen, J., Patton, R.J.: Robust Model-Fault Diagnosis for Dynamic Systems. Springer, US (1999)
Chilali, M., Gahinet, P., Apkarian, P., Member, A.: Robust pole placement in LMI regions. IEEE Trans. Autom. Control 44(12), 2257–2270 (1999)
Duan, G.R., Yu, H.H.: LMIs in Control Systems. CRC Press, Taylor and Francis (2013)
Frank, P.: Fault diagnosis in dynamic systems using analytical and knownledge-based redundancy: a survey and some new results. Automatica 26(3), 459–474 (1990)
Guang-Xun, D., Quan, Q., Cai, K.Y.: Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J. Intell. Robot. Syst. 78(1), 143–157 (2015)
Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer-Verlag, Berlin Heidelberg (2006)
Jurado, F., Castillo-Toledo, B., Di-Gennaro, S.: Stabilization of a quadrotor via takagi-sugeno fuzzy control. In: 12th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI). Orlando (2008)
Lendek, Z., Berna, A., Guzman-Gimenez, J., Sala, A., Garcia, P.: Application of takagi-sugeno observers for state estimation in a quadrotor. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando (2011)
Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: Open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)
Lofberg, J.: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the Computer Aided Control System Design Conference. Taipei (2004)
López-Estrada, F., Ponsart, J., Theilliol, D., Astorga-Zaragoza, C.: Robust \(H_{-/ H_{\infty }}\) fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions. Int. J. Control (In-press) (2015). doi:10.1080/00207179.2015.1044261
López-Estrada, F.R., Ponsart, J.C., Astorga-Zaragoza, C.M., Camas-Anzueto, J.L., Theilliol, D.: Robust sensor fault estimation for descriptor–LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor. Int. J. Appl. Math. Comput. Sci. 25(2), 233–244 (2015)
López-Estrada, F.R., Ponsart, J.C., Theilliol, D., Astorga-Zaragoza, C., Zhang, Y.: Robust sensor fault diagnosis and tracking controller for a uav modelled as lpv system. In: International Conference on Unmanned Aircraft Systems. Orlando, Florida (2014)
Mistler, V., Benallegue, A., M’Sirdi, N.: Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: 10th IEEE InternationalWorkshop on Robot and Human Interactive Communication, pp. 586–593 (2001)
Office of the Secretary of Defense: Unmanned aerial vehicles roadmap 2002–2027. Tech. rep. Washington, DC (2002)
Qi, X., Qi, J.T., Theilliol, D., Zhang, Y.M., Han, J.D., Song, D.L., Hua, C.: A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. J. Intell. Robot. Syst. 73(1–4), 535–555 (2014)
Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H ∞ control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)
Rodrigues, M., Hamdi, H., BenHadj-Braiek, N., Theilliol, D.: Observer-based fault tolerant control design for a class of LPV descriptor systems. J. Frankl. Inst. 351(6), 3104–3125 (2014)
Rotondo, D., Nejjari, F., Puig, V.: Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)
Samy, I., Postlethwaite, I., Gu, D.W.: Survey and application of sensor fault detection and isolation schemes. Control. Eng. Pract. 19(7), 658–674 (2011)
Saul, M.D.O., Puig, V., Witczak, M., Quevedo, J.: Fault-tolerant control of a two-degree of freedom helicopter using LPV techniques. In: 16th Mediterranean Conference on Control and Automation, pp. 1204–1209 (2008)
Serirojanakul, A., Wongsaisuwan, M.: Optimal control of quad-rotor helicopter using state feedback LPV method. In: 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Hua Hin, Thailand (2012)
Shamma, J.: An overview of LPV systems. In: Mohammadpour, J., Scherer, C.W. (eds.) Control of Linear Parameter Varying Systems with Applications, pp 3–26. Springer, US (2012)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1), 116–132 (1985)
Theilliol, D., Aberkane, S.: Desing of LPV observers with unmeasurable gain scheduling variable under sensors faults. In: IFAC World Congress. Milano, Italy (2011)
Vermeiren, L., Dequidt, A., Afroun, M., Guerra, T.M.: Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA Trans. 51(5), 596–608 (2012)
Zhang, Y.M., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)
Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32, 229–252 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
López-Estrada, F.R., Ponsart, JC., Theilliol, D. et al. LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV. J Intell Robot Syst 84, 163–177 (2016). https://doi.org/10.1007/s10846-015-0295-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-015-0295-y