Skip to main content

Advertisement

Log in

LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work is dedicated to the design of a robust fault detection and tracking controller system for a UAV subject to external disturbances. First, a quadrotor modelled as a Linear Parameter Varying (LPV) system is considered as a target to design and to illustrate the proposed methodologies. In order to perform fault detection and isolation, a robust LPV observer is designed. Sufficient conditions to guarantee asymptotic stability and robustness against disturbance are given by a set of feasible Linear Matrix Inequalities (LMIs). Furthermore, the observer gains are designed with a desired dynamic by considering pole placement based on LMI regions. Then, a fault detection and isolation scheme is considered by mean of an observer bank in order to detect and isolate sensor faults. Second, a feedback controller is designed by considering a comparator integrator control scheme. The goal is to design a robust controller, such that the UAV tracks some reference positions. Finally, some simulations in fault-free and faulty operations are considered on the quadrotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Asemani, M.H., Majd, V.J.: A robust H observer-based controller design for uncertain T-S fuzzy systems with unknown premise variables via LMI. Fuzzy Sets Syst. 212, 21–40 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Briat, C.: Linear Parameter-Varying and Time-Delay Systems - Analysis, Observation, Filtering & Control, Volume 3 of Advances on Delays and Dynamics. Springer-Verlag, Heidelberg (2014)

    Google Scholar 

  3. Cen, Z., Noura, H., Susilo, T.B., Al Younes, Y.: Robust fault diagnosis for quadrotor UAVs using adaptive thau observer. J. Intell. Robot. Syst. 73(1–4), 573–588 (2014)

    Article  Google Scholar 

  4. Chadli, M., Abdo, A., Ding, S.X.: Fault detection filter for discrete-time Takagi-Sugeno fuzzy system. Automatica 49(7), 1996–2005 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi-Sugeno. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)

    Article  Google Scholar 

  6. Chen, J., Patton, R.J.: Robust Model-Fault Diagnosis for Dynamic Systems. Springer, US (1999)

    Book  MATH  Google Scholar 

  7. Chilali, M., Gahinet, P., Apkarian, P., Member, A.: Robust pole placement in LMI regions. IEEE Trans. Autom. Control 44(12), 2257–2270 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, G.R., Yu, H.H.: LMIs in Control Systems. CRC Press, Taylor and Francis (2013)

  9. Frank, P.: Fault diagnosis in dynamic systems using analytical and knownledge-based redundancy: a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  10. Guang-Xun, D., Quan, Q., Cai, K.Y.: Controllability analysis and degraded control for a class of hexacopters subject to rotor failures. J. Intell. Robot. Syst. 78(1), 143–157 (2015)

    Article  Google Scholar 

  11. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer-Verlag, Berlin Heidelberg (2006)

    Book  Google Scholar 

  12. Jurado, F., Castillo-Toledo, B., Di-Gennaro, S.: Stabilization of a quadrotor via takagi-sugeno fuzzy control. In: 12th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI). Orlando (2008)

  13. Lendek, Z., Berna, A., Guzman-Gimenez, J., Sala, A., Garcia, P.: Application of takagi-sugeno observers for state estimation in a quadrotor. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC). Orlando (2011)

  14. Lim, H., Park, J., Lee, D., Kim, H.J.: Build your own quadrotor: Open-source projects on unmanned aerial vehicles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012)

    Article  Google Scholar 

  15. Lofberg, J.: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the Computer Aided Control System Design Conference. Taipei (2004)

  16. López-Estrada, F., Ponsart, J., Theilliol, D., Astorga-Zaragoza, C.: Robust \(H_{-/ H_{\infty }}\) fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions. Int. J. Control (In-press) (2015). doi:10.1080/00207179.2015.1044261

    MATH  Google Scholar 

  17. López-Estrada, F.R., Ponsart, J.C., Astorga-Zaragoza, C.M., Camas-Anzueto, J.L., Theilliol, D.: Robust sensor fault estimation for descriptor–LPV systems with unmeasurable gain scheduling functions: Application to an anaerobic bioreactor. Int. J. Appl. Math. Comput. Sci. 25(2), 233–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. López-Estrada, F.R., Ponsart, J.C., Theilliol, D., Astorga-Zaragoza, C., Zhang, Y.: Robust sensor fault diagnosis and tracking controller for a uav modelled as lpv system. In: International Conference on Unmanned Aircraft Systems. Orlando, Florida (2014)

  19. Mistler, V., Benallegue, A., M’Sirdi, N.: Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In: 10th IEEE InternationalWorkshop on Robot and Human Interactive Communication, pp. 586–593 (2001)

  20. Office of the Secretary of Defense: Unmanned aerial vehicles roadmap 2002–2027. Tech. rep. Washington, DC (2002)

  21. Qi, X., Qi, J.T., Theilliol, D., Zhang, Y.M., Han, J.D., Song, D.L., Hua, C.: A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. J. Intell. Robot. Syst. 73(1–4), 535–555 (2014)

    Article  Google Scholar 

  22. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear H control structure for a quadrotor helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rodrigues, M., Hamdi, H., BenHadj-Braiek, N., Theilliol, D.: Observer-based fault tolerant control design for a class of LPV descriptor systems. J. Frankl. Inst. 351(6), 3104–3125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rotondo, D., Nejjari, F., Puig, V.: Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults. Int. J. Appl. Math. Comput. Sci. 25(1), 7–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Samy, I., Postlethwaite, I., Gu, D.W.: Survey and application of sensor fault detection and isolation schemes. Control. Eng. Pract. 19(7), 658–674 (2011)

    Article  Google Scholar 

  26. Saul, M.D.O., Puig, V., Witczak, M., Quevedo, J.: Fault-tolerant control of a two-degree of freedom helicopter using LPV techniques. In: 16th Mediterranean Conference on Control and Automation, pp. 1204–1209 (2008)

  27. Serirojanakul, A., Wongsaisuwan, M.: Optimal control of quad-rotor helicopter using state feedback LPV method. In: 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Hua Hin, Thailand (2012)

  28. Shamma, J.: An overview of LPV systems. In: Mohammadpour, J., Scherer, C.W. (eds.) Control of Linear Parameter Varying Systems with Applications, pp 3–26. Springer, US (2012)

    Chapter  Google Scholar 

  29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC-15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  30. Theilliol, D., Aberkane, S.: Desing of LPV observers with unmeasurable gain scheduling variable under sensors faults. In: IFAC World Congress. Milano, Italy (2011)

  31. Vermeiren, L., Dequidt, A., Afroun, M., Guerra, T.M.: Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA Trans. 51(5), 596–608 (2012)

    Article  Google Scholar 

  32. Zhang, Y.M., Chamseddine, A., Rabbath, C., Gordon, B., Su, C.Y., Rakheja, S., Fulford, C., Apkarian, J., Gosselin, P.: Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed. J. Frankl. Inst. 350(9), 2396–2422 (2013)

    Article  MATH  Google Scholar 

  33. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32, 229–252 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Ponsart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Estrada, F.R., Ponsart, JC., Theilliol, D. et al. LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV. J Intell Robot Syst 84, 163–177 (2016). https://doi.org/10.1007/s10846-015-0295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-015-0295-y

Keywords