Skip to main content
Log in

A Quadrotor Test Bench for Six Degree of Freedom Flight

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a quadrotor test bench that can test and verify the 6 DOF flight controller is presented. The development of controller for aerial vehicle is usually a long and dangerous procedure. It needs series of tests from simulation to real flight. However, there are differences between simulation and real time flight due to the limit of the current simulation technique. The quadrotor test bench presented in the paper aims to fill the gap between simulation and real time flight. The test bench contains a quadrotor attached on the base through a sphere joint which let the quadrotor be able to rotate around 3 axes. A 6 axes force/torque sensor is used to simulate the position of the aerial vehicle. The paper presents the detailed system design and implementation of the test bench. Furthermore, the modeling and the parameter identification of the quadrotor on the test bench are described. A 6 DOF controller that consists of both guidance controller and attitude controller is designed using a nonlinear control technique named trajectory linearization control (TLC). Finally, the flight tests on the quadrotor test bench are demonstrated. The results indicate the feasibility and the value of the test bench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AscendingTechnologies Gmbh: Products 2012. http://www.asctec.de/ (2012)

  2. Draganfly Innovations Inc: Draganflyer X4. http://www.draganfly.com/uav-helicopter/draganflyer-x4/ (2012)

  3. MK-QuadroKopter. http://www.mikrokopter.de/ucwiki/en/MK-Quadro (2012)

  4. Alexis, K., Nikolakopoulos, G., Tzes, A.: Design and experimental verification of a constrained finite time optimal control scheme for the attitude control of a quadrotor helicopter subject to wind gusts. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1636–1641. Anchorage, Alaska, USA (2010)

  5. Altuǧ, E., Ostrowski, J.P., Taylor, C.J.: Control of a quadrotor helicopter using dual camera visual feedback. Int. J. Robot. Res. 24(5), 329–341 (2005)

    Article  Google Scholar 

  6. Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009)

    Article  Google Scholar 

  7. Cabecinhas, D., Naldi, R., Marconi, L., Silvestre, C., Cunha, R.: Robust take-off and landing for a quadrotor vehicle. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1630–1635. Anchorage, Alaska, USA (2010)

  8. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  MathSciNet  Google Scholar 

  9. Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1), 127–151 (2009)

    Article  MATH  Google Scholar 

  10. Das, A., Subbarao, K., Lewis, F.: Dynamic inversion with zero-dynamics stabilisation for quadrotor control. IET Contr. Theory Appl. 3(3), 303–314 (2009)

    Article  MathSciNet  Google Scholar 

  11. Ding, X., Yu, Y.: Motion planning and stabilization control of a multi-propeller multifunction aerial robot. IEEE/ASME Trans. Mechatronics (2012). doi:10.1109/TMECH.2011.2182202

    Google Scholar 

  12. Ding, X., Yu, Y., Zhu, J.J.: Trajectory linearization tracking control for dynamics of a multi-propeller and multifunction aerial robot—MMAR. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 757–762. Shanghai, China (2011)

  13. Gillula, J.H., Huang, H., Vitus, M.P., Tomlin, C.J.: Design of guaranteed safe maneuvers using reachable sets: autonomous quadrotor aerobatics in theory and practice. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1649–1654. Anchorage, Alaska, USA (2010)

  14. Hanford, S.D., Long, L.N., Horn, J.F.: A small semi-autonomous rotary-wing unmanned air vehicle (UAV). In: Proc. AIAA Infotech@Aerospace Conf. Washington DC, USA (2005)

  15. Hehn, M., DAndrea, R.: A flying inverted pendulum. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 763–770. Shanghai, China (2011)

  16. Herisse, B., Hamel, T., Mahony, R., Russotto, F.X.: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)

    Article  Google Scholar 

  17. Herisse, B., Russotto, F.X., Hamel, T., Mahony, R.: Hovering flight and vertical landing control of a VTOL unmanned aerial vehicle using optical flow. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 801–806. Nice, France (2008)

  18. Hoffmann, F., Goddemeier, N., Bertram, T.: Attitude estimation and control of a quadrocopter. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1072–1077. Taipei, Taiwan (2010)

  19. Hoffmann, G.M., Huang, H., Waslande, S.L., Tomlin, C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proc. AIAA Guid., Navigat. Control Conf. Exhibit. Hilton Head, South Carolina (2007)

  20. Huang, H., Hoffmann, G.M., Waslander, S.L., Tomlin, C.J.: Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3277–3282. Kobe, Japan (2009)

  21. Huang, R., Liu, Y., Zhu, J.J.: Guidance, navigation, and control system design for tripropeller vertical-takeoff-and-landing unmanned air vehicle. AIAA J. Aircr. 46(6), 1837–1856 (2009)

    Article  Google Scholar 

  22. Lee, D., Kim, H.J., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7(3), 419–428 (2009)

    Article  Google Scholar 

  23. Liu, Y., Zhu, J.J.: Regular perturbation analysis for trajectory linearization control. In: Proc. Amer. Control Conf., pp. 3053–3058. New York, USA (2007)

  24. Liu, Y., Zhu, J.J.: Singular perturbation analysis for trajectory linearization control. In: Proc. Amer. Control Conf., pp. 3047–3052. New York, USA (2007)

  25. Liu, Y., Zhu, J.J., II, R.L., Wu, J.: Omni-directional mobile robot controller based on trajectory linearization. Robot. Auton. Syst. 56(5), 461–479 (2008)

    Article  Google Scholar 

  26. Lupashin, S., Schollig, A., Sherback, M., DAndrea, R.: A simple learning strategy for high-speed quadrocopter multi-flips. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 1642–1648. Anchorage, Alaska, USA (2010)

  27. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2520–2525. Shanghai, China (2011)

  28. Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2668–2673. San Francisco, CA, USA (2011)

  29. Mellinger, D., Michael, N., Kumar, V.: Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31(5), 664–674 (2012)

    Article  Google Scholar 

  30. Mellinger, D., Michael, N., Shomin, M., Kumar, V.: Recent advances in quadrotor capabilities. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2964–2965. Shanghai, China (2011)

  31. Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Intl. Sym. on Distributed Auton. Syst. Lausanne, Switzerland (2010)

  32. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robot. 30(1), 73–86 (2011)

    Article  Google Scholar 

  33. Michael, N., Kumar, V.: Control of ensembles of aerial robots. Proc. IEEE 99(9), 1587–1620 (2011)

    Article  Google Scholar 

  34. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The grasp multiple micro-UAV test bed. IEEE Robot. Autom. Magazine 17(3), 56–65 (2010)

    Article  Google Scholar 

  35. Michini, B., Redding, J., Ure, N.K., Cutler, M., How, J.P.: Design and flight testing of an autonomous variable-pitch quadrotor. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2978–2979. Shanghai, China (2011)

  36. Micklet, M.C., Huang, R., Zhu, J.J.: Unstable, nonminimum phase, nonlinear tracking by trajectory linearization control. In: Proc. IEEE Conf. Control Appl., pp. 812–818. Taipei, Taiwan (2004)

  37. Mokhtari, A., M’sirdi, N.K., Meghriche, K., Belaidi, A.: Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle. Adv. Robot. 20(1), 71–91 (2006)

    Article  Google Scholar 

  38. Muller, M., Lupashin, S., DAndrea, R.: Quadrocopter ball juggling. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 25–30. San Francisco, CA, USA (2011)

  39. Pounds, P., Mahony, R., Corke, P.: Modelling and control of a large quadrotor robot. Control Eng. Practice 18(7), 691–699 (2010)

    Article  Google Scholar 

  40. Pounds, P., Mahony, R., Hynes, P., Roberts, J.: Design of a four-rotor aerial robot. In: Proc. Australas. Conf. Robot. Autom., pp. 145–150. Auckland, New Zealand (2002)

  41. Romero, H., Salazar, S., Lozano, R.: Real-time stabilization of an eight-rotor UAV using optical flow. IEEE Trans. Robot. 25(4), 809–817 (2009)

    Article  Google Scholar 

  42. Salazar-Cruz, S., Lozano, R., Escareno, J.: Stabilization and nonlinear control for a novel trirotor mini-aircraft. Control Eng. Practice 17(8), 886–894 (2009)

    Article  Google Scholar 

  43. Samir, B.: Design and control of quadrotors with application to autonomous flying. Ph.D. thesis, SwissFederal Institute of Technology, Lausanne (2007)

  44. Schollig, A., Augugliaro, F., Lupashin, S., DAndrea, R.: Synchronizing the motion of a quadrocopter to music. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3355–3360. Anchorage, Alaska, USA (2010)

  45. Selig, J.M.: Geometrical Methods in Robotics. Springer-Verlag (1996)

  46. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  47. Turpin, M., Michael, N., Kumar, V.: Trajectory design and control for aggressive formation flight with quadrotors. In: Intl. Sym. of Robot. Research. Flagstaff, AZ (2011)

  48. Vitzilaios, N.I., Tsourveloudis, N.C.: An experimental test bed for small unmanned helicopters. J. Intell. Robot. Syst. 54(5), 769–794 (2000)

    Article  Google Scholar 

  49. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1–4), 221–238 (2011)

    Article  Google Scholar 

  50. Wu, X., Liu, Y., Zhu, J.J.: Design and real time testing of a trajectory linearization flight controller for the quanser UFO. In: Proc. Amer. Control Conf., pp. 3913–3918. Athens, OH, USA (2003)

  51. Zhu, J.J.: PD-spectral theory for multivariable linear time-varying systems. In: Proc. IEEE Conf. Decis. Control, pp. 3908–3913. San Diego, California USA (1997)

  52. Zhu, J.J., Huizenga, A.B.: A type two trajectory linearization controller for a reusable launch vehicle—a singular perturbation approach. In: AIAA Atmos. Flight Mech. Conf. Exhibit, pp. 1121–1137. Providence, Rhode Island (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilun Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Ding, X. A Quadrotor Test Bench for Six Degree of Freedom Flight. J Intell Robot Syst 68, 323–338 (2012). https://doi.org/10.1007/s10846-012-9680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-012-9680-y

Keywords

Navigation