Skip to main content
Log in

Using regression models for predicting the product quality in a tubing extrusion process

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Quality in a manufacturing process implies that the performance characteristics of the product and the process itself are designed to meet specific objectives. Thus, accurate quality prediction plays a principal role in delivering high-quality products to further enhance competitiveness. In tubing extrusion, measuring of the inner and outer diameters is typically performed either manually or with ultrasonic or laser scanners. This paper shows how regression models can result useful to estimate both those physical quality indices in a tube extrusion process. A real-life data set obtained from a Mexican extrusion manufacturing company is used for the empirical analysis. Experimental results demonstrate that k nearest-neighbor and support vector regression methods (with a linear kernel and with a radial basis function) are especially suitable for predicting the inner and outer diameters of an extruded tube based on the evaluation of 15 extrusion and pulling process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adly, F., Alhussein, O., Yoo, P. D., Al-Hammadi, Y., Taha, K., Muhaidat, S., et al. (2015). Simplified subspaced regression network for identification of defect patterns in semiconductor wafer maps. IEEE Transactions on Industrial Informatics, 11(6), 1267–1276.

    Article  Google Scholar 

  • Batista, G. E. A. P. A., & Silva, D. F. (2009). How k-nearest neighbor parameters affect its performance. In Argentine symposium on artificial intelligence, Mar de Plata, Argentina (pp. 1–12).

  • Biau, G., Devroye, L., Dujmović, V., & Krzyzak, A. (2012). An affine invariant k-nearest neighbor regression estimate. Journal of Multivariate Analysis, 112, 24–34.

    Article  Google Scholar 

  • Buza, K., Nanopoulos, A., & Nagy, G. (2015). Nearest neighbor regression in the presence of bad hubs. Knowledge-Based Systems, 86, 250–260.

    Article  Google Scholar 

  • Carrano, E. G., Coelho, D. G., Gaspar-Cunha, A., Wanner, E. F., & Takahashi, R. H. (2015). Feedback-control operators for improved Pareto-set description: Application to a polymer extrusion process. Engineering Applications of Artificial Intelligence, 38, 147–167.

    Article  Google Scholar 

  • Caruana, R., & Niculescu-Mizil, A. (2004). Data mining in metric space: An empirical analysis of supervised learning performance criteria. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining, New York, NY (pp. 69–78).

  • Charaniya, S., Le, H., Rangwala, H., Mills, K., Johnson, K., Karypis, G., et al. (2010). Mining manufacturing data for discovery of high productivity process characteristics. Journal of Biotechnology, 147(3–4), 186–197.

    Article  Google Scholar 

  • Chevanan, N., Muthukumarappan, K., & Rosentrater, K. A. (2007). Neural network and regression modeling of extrusion processing parameters and properties of extrudates containing DDGS. Transactions of the American Society of Agricultural and Biological Engineers, 50(5), 1765–1778.

    Google Scholar 

  • Chien, C. F., Wang, W. C., & Cheng, J. C. (2007). Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications, 33(1), 192–198.

    Article  Google Scholar 

  • Chondronasios, A., Popov, I., & Jordanov, I. (2016). Feature selection for surface defect classification of extruded aluminum profiles. The International Journal of Advanced Manufacturing Technology, 83(1), 33–41.

    Article  Google Scholar 

  • Chou, J. S., Ngo, N. T., & Chong, W. K. (2017). The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Engineering Applications of Artificial Intelligence, 65, 471–483.

    Article  Google Scholar 

  • Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2008). Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501–521.

    Article  Google Scholar 

  • Dhafr, N., Ahmad, M., Burgess, B., & Canagassababady, S. (2006). Improvement of quality performance in manufacturing organizations by minimization of production defects. Robotics and Computer-Integrated Manufacturing, 22(5–6), 536–542.

    Article  Google Scholar 

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, 6(4), 325–327.

    Article  Google Scholar 

  • Erzurumlu, T., & Oktem, H. (2007). Comparison of response surface model with neural network in determining the surface quality of moulded parts. Materials & Design, 28(2), 459–465.

    Article  Google Scholar 

  • Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2013). Automatic defect detection on hot-rolled flat steel products. IEEE Transactions on Instrumentation and Measurement, 62(3), 612–621.

    Article  Google Scholar 

  • González Marcos, A., Pernía Espinoza, A. V., Alba Elías, F., & García Forcada, A. (2007). A neural network-based approach for optimising rubber extrusion lines. International Journal of Computer Integrated Manufacturing, 20(8), 828–837.

    Article  Google Scholar 

  • Guyader, A., & Hengartner, N. (2013). On the mutual nearest neighbors estimate in regression. The Journal of Machine Learning Research, 14, 2361–2376.

    Google Scholar 

  • Hall, M., Frank, E., & Holmes, G. (2009). The WEKA data mining software: An update. SIGKDD Explorations, 11(1), 10–18.

    Article  Google Scholar 

  • Harding, J. A., Shahbaz, M., Srinivas, S., & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969–976.

    Article  Google Scholar 

  • Hsiang, S. H., Lin, Y. W., & Lai, J. W. (2012). Application of fuzzy-based Taguchi method to the optimization of extrusion of magnesium alloy bicycle carriers. Journal of Intelligent Manufacturing, 23(3), 629–638.

    Article  Google Scholar 

  • Hu, C., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., & Gorka, T. (2014). Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Applied Energy, 129, 49–55.

    Article  Google Scholar 

  • Jiang, H., Yan, Z., & Liu, X. (2013). Melt index prediction using optimized least squares support vector machines based on hybrid particle swarm optimization algorithm. Neurocomputing, 119, 469–477.

    Article  Google Scholar 

  • Khan, J. G., Dalu, R. S., & Gadekar, S. S. (2014). Defects in extrusion process and their impact on product quality. International Journal of Mechanical Engineering and Robotics Research, 3(3), 10–18.

    Google Scholar 

  • Kohlert, M., & König, A. (2015). Large, high-dimensional, heterogeneous multi-sensor data analysis approach for process yield optimization in polymer film industry. Neural Computing and Applications, 26(3), 581–588.

    Article  Google Scholar 

  • Köksal, G., Batmaz, I., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38(10), 13,448–13,467.

    Article  Google Scholar 

  • Kramer, O. (2011). Unsupervised K-nearest neighbor regression. ArXiv e-prints arXiv:1107.3600.

  • Krömer, P., Snášel, V., Platoš, J., & Abraham, A. (2010). Evolving fuzzy classifier for data mining—An information retrieval approach. In Proceedings of the 3rd international conference on computational intelligence in security for information systems, León, Spain (pp. 25–32).

  • Kusiak, A. (2006). Data mining: Manufacturing and service applications. International Journal of Production Research, 44(18–19), 4175–4191.

    Article  Google Scholar 

  • Kusiak, A., & Kurasek, C. (2001). Data mining of printed-circuit board defects. IEEE Transactions on Robotics and Automation, 17(2), 191–196.

    Article  Google Scholar 

  • Lee, S. K., Kang, P., & Cho, S. (2014). Probabilistic local reconstruction for k-nn regression and its application to virtual metrology in semiconductor manufacturing. Neurocomputing, 131, 427–439.

    Article  Google Scholar 

  • Li, H. J., Qi, L. H., Han, H. M., & Guo, L. J. (2004). Neural network modeling and optimization of semi-solid extrusion for aluminum matrix composites. Journal of Materials Processing Technology, 151(1–3), 126–132.

    Article  Google Scholar 

  • Liukkonen, M., Hiltunen, T., Havia, E., Leinonen, H., & Hiltunen, Y. (2009). Modeling of soldering quality by using artificial neural networks. IEEE Transactions on Electronics Packaging Manufacturing, 32(2), 89–96.

    Article  Google Scholar 

  • Ma, J., Theiler, J., & Perkins, S. (2003). Accurate on-line support vector regression. Neural Computation, 15(11), 2683–2703.

    Article  Google Scholar 

  • Meiabadi, M. S., Vafaeesefat, A., & Sharifi, F. (2013). Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm. Journal of Optimization in Industrial Engineering, 6(13), 49–54.

    Google Scholar 

  • Oberg, E., Jones, F., Horton, H., Ryffel, H., & McCauley, C. (2012). Machinery’s handbook. New York, NY: Industrial Press.

    Google Scholar 

  • Oke, S. A., Johnson, A. O., Charles-Owaba, O. E., Oyawale, F. A., & Popoola, I. O. (2006). A neuro-fuzzy linguistic approach in optimizing the flow rate of a plastic extruder process. International Journal of Science & Technology, 1(2), 115–123.

    Google Scholar 

  • Pratihar, D. K. (2015). Expert systems in manufacturing processes using soft computing. The International Journal of Advanced Manufacturing Technology, 81(5), 887–896.

    Article  Google Scholar 

  • Ramana, E. V., & Reddy, P. R. (2013). Data mining based knowledge discovery for quality prediction and control of extrusion blow molding process. The International Journal of Advanced Manufacturing Technology, 6(2), 703–713.

    Google Scholar 

  • Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 35(3), 401–410.

    Article  Google Scholar 

  • Sadeghi, B. H. M. (2000). A BP-neural network predictor model for plastic injection molding process. Journal of Materials Processing Technology, 103(3), 411–416.

    Article  Google Scholar 

  • Sharma, R. S., Upadhyay, V., & Raj, K. H. (2009). Neuro-fuzzy modeling of hot extrusion process. Indian Journal of Engineering and Materials Sciences, 16, 86–92.

    Google Scholar 

  • Smola, A., & Schlkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    Article  Google Scholar 

  • Tan, S. C., Watada, J., Ibrahim, Z., & Khalid, M. (2015). Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects. IEEE Transactions on Neural Networks and Learning Systems, 26(5), 933–950.

    Article  Google Scholar 

  • Urraca Valle, R., Sodupe Ortega, E., Antoñanzas Torres, J., Alonso García, E., Sanz García, A., & Martínez de Pisón Ascacíbar, F. J. (2013). Comparative methodology of non-linear models for predicting rheological properties of rubber mixtures in industrial lines. In Proceedings of the 17th international congress on project management and engineering, Logroño, Spain (pp. 1346–1357)

  • Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems,. https://doi.org/10.1016/j.jmsy.2018.01.003.

    Article  Google Scholar 

  • Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools and techniques. Burlington, MA: Morgan Kaufmann Publishers.

    Google Scholar 

  • Wu, C. Y., & Hsu, Y. C. (2002). Optimal shape design of an extrusion die using polynomial networks and genetic algorithms. The International Journal of Advanced Manufacturing Technology, 19(2), 79–87.

    Article  Google Scholar 

  • Wu, D., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests. Journal of Manufacturing Science and Engineering, 139(7), 071,018–071,026.

    Article  Google Scholar 

  • Xu, Y., Zhang, Q., Zhang, W., & Zhang, P. (2015). Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. The International Journal of Advanced Manufacturing Technology, 76(9), 2199–2208.

    Article  Google Scholar 

  • Yang, C. C., & Shieh, M. D. (2010). A support vector regression based prediction model of affective responses for product form design. Computers & Industrial Engineering, 59(4), 682–689.

    Article  Google Scholar 

  • Yin, S., Li, X., Gao, H., & Kaynak, O. (2015). Data-based techniques focused on modern industry: An overview. IEEE Transactions on Industrial Electronics, 62(1), 657–667.

    Article  Google Scholar 

  • Yu, J. C., Chen, X. X., Hung, T. R., & Thibault, F. (2004). Optimization of extrusion blow molding processes using soft computing and Taguchi’s method. Journal of Intelligent Manufacturing, 15(5), 625–634.

    Article  Google Scholar 

  • Zhang, Z., Wang, T., & Liu, X. (2014). Melt index prediction by aggregated RBF neural networks trained with chaotic theory. Neurocomputing, 131, 368–376.

    Article  Google Scholar 

  • Zhao, G., Chen, H., Zhang, C., & Guan, Y. (2013). Multiobjective optimization design of porthole extrusion die using pareto-based genetic algorithm. The International Journal of Advanced Manufacturing Technology, 69(5), 1547–1556.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Spanish Ministry of Economy, Industry and Competitiveness [TIN2013-46522-P], and the Generalitat Valenciana [PROMETEOII/2014/062].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, V., Sánchez, J.S., Rodríguez-Picón, L.A. et al. Using regression models for predicting the product quality in a tubing extrusion process. J Intell Manuf 30, 2535–2544 (2019). https://doi.org/10.1007/s10845-018-1418-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-018-1418-7

Keywords

Navigation