Skip to main content

Advertisement

Log in

Potential effects of climate change on the distribution of Scarabaeidae dung beetles in Western Europe

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Dung beetles are indispensable in pasturelands, especially when poor efficiency of earthworms and irregular rainfall (e.g. under a Mediterranean climate) limit pad decomposition. Although observed and projected species range shifts and extinctions due to climate change have been documented for plants and animals, little effort has focused on the response of keystone species such as the scarab beetles of dung beetle decomposers. Our study aims to forecast the distribution of 37 common Scarabaeidae dung beetle species in France, Portugal and Spain (i.e. more than half of the western European Scarabaeidae fauna) in relation to two climate change scenarios (A2 and B1) for the period leading to 2080. On average, 21 % of the species should change in each 50-km UTM grid cell. The highest faunistic turnover rate and a significant increase in species richness are expected in the north of the study area while a marked impoverishment is expected in the south, with little difference between scenarios. The potential enrichment of northern regions depends on the achievement of the northward shift of thermophilous species, and climate change is generally likely to reduce the current distribution of the majority of species. Under these conditions, the distribution of resource—i.e. the extent and distribution of pastures—will be a key factor limiting species’ responses to climate change. The dramatic abandonment of extensive grazing across many low mountains of southern Europe may thus represent a serious threat to dung beetle distribution changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aragón P et al (2010) The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Glob Ecol Biogeogr 19:40–49

    Article  Google Scholar 

  • Araújo M et al (2008) Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31(1):8–15

    Article  Google Scholar 

  • Barbero E et al (1999) Dung beetle conservation: effects of habitat and resource selection (Coleoptera: Scarabaeoidea). J Insect Conserv 3:75–84

    Article  Google Scholar 

  • Biström O et al (1991) Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera). Entomologica Fennica 2:53–66

    Google Scholar 

  • Cabrero-Sañudo FJ, Lobo JM (2003) Estimating the number of species not yet described and their characteristics: the case of Western Palaearctic dung beetle species (Coleoptera, Scarabaeoidea). Biodivers Conserv 12:147–166

    Article  Google Scholar 

  • Cardinale BJ et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992

    Article  CAS  PubMed  Google Scholar 

  • Carpaneto GM et al (2007) Inferring species decline from collection records: roller dung beetles in Italy (Coleoptera, Scarabaeidae). Divers Distrib 13:903–919

    Article  Google Scholar 

  • Devictor V et al (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124

    Article  Google Scholar 

  • Doube BM et al (1991) Native and introduced dung beetles in Australia. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 255–282

    Google Scholar 

  • Duncan RP et al (2009) Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proc R Soc B 267:1449–1457

    Article  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Errouissi F et al (2004) Composition and structure of dung beetle assemblages in mountain grasslands of the Southern Alps. Ann Entomol Soc Am 97(4):701–709

    Article  Google Scholar 

  • Friedlingstein P (2008) A steep road to climate stabilization. Nature 451:297–298

    Article  CAS  PubMed  Google Scholar 

  • Guisan A (2003) Simuler la répartition géographique des espèces et de la végétation (ou “Si DeCandolle avait eu on ordinateur …”), Synthèse. Saussurea 33:79–99

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    CAS  PubMed  Google Scholar 

  • Hanski I (1991) North temperate dung beetles. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 75–96

    Google Scholar 

  • Hanski I, Cambefort Y (1991) Dung beetle ecology. Princeton University Press, Princeton

    Google Scholar 

  • Hättenschwiler S et al (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  PubMed  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15(2):56–61

    Article  PubMed  Google Scholar 

  • Jay-Robert P et al (1997) Altitudinal turnover and species richness variation in European montane dung beetle assemblages. Arct Alp Res 29(2):196–205

    Article  Google Scholar 

  • Jay-Robert P et al (2008a) Temporal coexistence of dung-dweller and soil-digger dung beetles (Coleoptera, Scarabaeoidea) in contrasting Mediterranean habitats. Bull Entomol Res 98:303–316

    Article  CAS  PubMed  Google Scholar 

  • Jay-Robert P et al (2008b) Spatial and temporal variation of mountain dung beetle assemblages and their relationships with environmental factors (Aphodiinae: Geotrupinae: Scarabaeinae). Ann Entomol Soc Am 101(1):58–69

    Article  Google Scholar 

  • Jay-Robert P et al (2008c) Relative efficiency of extensive grazing vs. wild ungulates management for dung beetle conservation in a heterogeneous landscape from Southern Europe (Scarabaeinae, Aphodiinae, Geotrupinae). Biol Conserv 141:2879–2887

    Article  Google Scholar 

  • Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8:151–161

    Google Scholar 

  • Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acata Oecologica 31:361–369

    Article  Google Scholar 

  • Kadiri N et al (1997) Conséquences de l’interaction entre préférences pour l’habitat et quantité de ressources trophiques sur les communautés d’insectes coprophages (Coleoptera : Scarabaeoidea). Acta Oecologica 18(2):107–119

    Article  Google Scholar 

  • Keith DA et al (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  PubMed  Google Scholar 

  • Lobo JM (1993) The relationship between distribution and abundance in a dung beetle community (Col., Scarabaeoidea). Acta Oecologica 14(1):43–55

    Google Scholar 

  • Lobo JM (2001) Decline of roller dung beetle (Scarabaeinae) populations in the Iberian peninsula during the 20th century. Biol Conserv 97:43–50

    Article  Google Scholar 

  • Lobo JM, Martín-Piera F (1991) La creación de un banco de datos zoológico sobre los Scarabaeidae (Coleoptera: Scarabaeoidea) Ibero-Baleares: una experiencia piloto. Elytron 5:31–37

    Google Scholar 

  • Lobo JM, Martín-Piera F (1999) Between-group differences in the Iberian dung beetle species-area relationship (Coleoptera: Scarabaeidae). Acta Oecologica 20(6):587–597

    Article  Google Scholar 

  • Lobo JM, Martín-Piera F (2002) Searching for a predictive model for species richness of Iberian dung beetle based on spatial and environmental variables. Conserv Biol 16(1):158–173

    Article  Google Scholar 

  • Lobo JM et al (1997a) Les atlas faunistiques comme outils d’analyse spatiale de la biodiversité. Annales de la Société Entomologique de France (N.S.) 33(2):129–138

    Google Scholar 

  • Lobo JM et al (1997b) Diversity and spatial turnover of dung beetle (Coleoptera: Scarabaeoidea) communities in a protected area of south Europe (Doñana National Park, Huelva, Spain). Elytron 11:71–88

    Google Scholar 

  • Lobo JM et al (2001) Diversity, distinctiveness and conservation status of the Mediterranean coastal dung beetle assemblage in the Regional Natural Park of the Camargue (France). Divers Distrib 7:257–270

    Article  Google Scholar 

  • Lobo JM et al (2002) Modelling the species richness distribution of French dung beetles and delimiting the predictive capacity of different groups of explanatory variables (Coleoptera: Scarabaeidae). Glob Ecol Biogeogr 11:265–277

    Article  Google Scholar 

  • Lobo JM et al (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lumaret JP (1990) Atlas des Scarabéides Laparosticti de France. Secrétariat Faune—Flore/MNHN, Paris

  • Lumaret JP, Kirk AA (1991) South temperate dung beetles. In: Hanski I, Cambefort Y (eds) Dung beetle ecology. Princeton University Press, Princeton, pp 97–115

    Google Scholar 

  • Lumaret JP, Lobo JM (1996) Geographic distribution of endemic dung beetles (Coleoptera, Scarabaeoidea) in the Western Palaearctic region. Biodivers Lett 3:192–199

    Article  Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Change Biol 14:483–494

    Article  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15(2):320–331

    Article  Google Scholar 

  • Nakicenovic N, Swart R (2000) Emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Paulian R, Baraud J (1982) Faune des Coléoptères de France. II. Lucanoidea et Scarabaeoidea. Lechevalier, Paris

    Google Scholar 

  • Real R et al (2010) Species distribution models in climate change scenarios are still not useful for informing policy planning: an uncertainty assessment using fuzzy logic. Ecography 33:304–314

    Google Scholar 

  • Root TL et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  PubMed  Google Scholar 

  • Rosenlew H, Roslin T (2008) Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos 117:1659–1666

    Article  Google Scholar 

  • Roslin T (1999) Spatial ecology of dung beetles. PhD thesis. University of Helsinki

  • Roslin T (2000) Dung beetle movements at two spatial scales. Oikos 91:323–335

    Article  Google Scholar 

  • Roslin T, Koivunen A (2001) Distribution and abundance of dung beetles in fragmented landscapes. Oecologia 127(1):69–77

    Article  Google Scholar 

  • Schröter D et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  • Soberón M, Llorente B (1993) The use of species accumulation functions for the prediction of species richness. Conserv Biol 7(3):480–488

    Article  Google Scholar 

  • Stat Soft (2001) Statistica 6. Tulsa, OK 74104, USA

  • Stefanescu C et al (2003) Effects of climatic change on the phenology of butterflies in the northwest Mediterranean Basin. Glob Change Biol 9:1494–1506

    Article  Google Scholar 

  • Thuiller W (2003) BIOMOD: optimising predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W (2007) Climate change and the ecologist. Nature 448:550–552

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W et al (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32(3):369–373

    Article  Google Scholar 

  • Wassmer T (1994) Seasonality of coprophagous beetles in the Kaiserstuhl area near Freiburg (SW-Germany) including the winter months. Acta Oecologia 15(5):607–631

    Google Scholar 

  • Wilson MV, Shmida A (1984) Measuring beta diversity with presence absent data. J Ecol 72:1055–1064

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to John Thompson (UMR 5175 CEFE, Montpellier, France) who revised the English version of the manuscript. ED received financial support from the Agence Nationale de la Recherche contract ANR-05-BDIV-014. WT received support from European Commission’s FP6 ECOCHANGE (Challenges in assessing and forecasting biodiversity and ecosystem changes in 17 Europe, No 066866 GOCE) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jay-Robert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3757 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dortel, E., Thuiller, W., Lobo, J.M. et al. Potential effects of climate change on the distribution of Scarabaeidae dung beetles in Western Europe. J Insect Conserv 17, 1059–1070 (2013). https://doi.org/10.1007/s10841-013-9590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-013-9590-8

Keywords

Navigation