Skip to main content

Advertisement

Log in

Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches

  • Original Paper
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

To discuss the challenge of monitoring multi-species responses of tropical arthropods to disturbance, we considered a large dataset (4 × 105 individuals; 1,682 morphospecies representing 22 focal taxa) based on the work of parataxonomists to examine the effects of anthropogenic disturbance on arthropods at Gamba, Gabon. Replication included three sites in each of four different stages of forest succession and land use after logging, surveyed during a whole year with four sampling methods: pitfall, Malaise, flight-interception and yellow pan traps. We compared the suitability of each sampling method for biological monitoring and evaluated statistically their reliability for 118 arthropod families. Our results suggest that a range of sampling methods yields more diverse material than any single method operated with high replication. Multivariate analyses indicated that morphospecies composition in trap catches was more strongly influenced by habitat type than by sampling methods. This implies that for multi-species monitoring, differences in trap efficiency between habitats may be neglected, as far as habitat types remain well contrasted. We conclude that for the purpose of monitoring large arthropod assemblages in the long-term, a protocol based on operating a set of different and non-disruptive traps appears superior in design than summing a series of taxa-specific protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adis J (1979) Problems of interpreting arthropod sampling with pitfall traps. Zool Anz 202:177–184

    Google Scholar 

  • Adis J, Basset Y, Floren A, Hammond PM, Linsenmair KE (1998) Canopy fogging of an overstorey tree – recommendations for standardization. Ecotropica 4:93–97

    Google Scholar 

  • Agosti D, Majer JD, Alonso LE, Schultz TR (2000) Ants. Standards methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington

    Google Scholar 

  • Alonso A, Lee ME, Campbell P, Pauwels OSG, Dallmeier F (eds) (2006) Gamba, Gabon: Biodiversité d’une forêt équatoriale africaine/Gamba, Gabon: Biodiversity of an equatorial African rainforest, vol 12. Bull. Biol. Soc., Washington, pp 1–436

  • Basset Y, Aberlenc H-P, Springate ND, Delvare G (1997) A review of methods for collecting arthropods in tree canopies. In: Stork NE, Adis JA, Didham RK (eds) Canopy arthropods. Chapman and Hall, London, pp 27–52

    Google Scholar 

  • Basset Y, Charles E, Hammond DS, Brown VK (2001) Short-term effects of canopy openness on insect herbivores in a rain forest in Guyana. J Appl Ecol 38:1045–1058

    Article  Google Scholar 

  • Basset Y, Novotny V, Miller SE, Kitching RL (eds) (2003) Arthropods of tropical forests. Spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge

  • Basset Y, Mavoungou JF, Mikissa JB, Missa O, Miller SE, Kitching RL, Alonso A (2004a) Discriminatory power of different arthropod data sets for the biological monitoring of anthropogenic disturbance in tropical forests. Biodiv Conserv 13:709–732

    Article  Google Scholar 

  • Basset Y, Novotny V, Miller SE, Weiblen GD, Missa O, Stewart AJA (2004b) Conservation and biological monitoring of tropical forests: the role of parataxonomists. J Appl Ecol 41:163–174

    Article  Google Scholar 

  • Basset Y, Missa O, Alonso A, Miller SE, Curletti G, De Meyer M, Eardley C, Lewis OT, Mansell MW, Novotny V, Wagner T (2008) Choice of metrics for studying arthropod responses to habitat disturbance: one example from Gabon. Ins Conserv Div (in press)

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bowden J (1982) An analysis of the factors affecting catches of insects in light traps. Bull Ent Res 72:535–556

    Article  Google Scholar 

  • Colwell RK (2005) EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. Persistent URL http://www.purl.oclc.org/estimates

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond B 345:101–118

    Article  CAS  Google Scholar 

  • Conrad KF, Fox R, Woiwod IP (2007) Monitoring biodiversity: measuring long-term changes in insect abundance. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. CABI Publishing, Wallingford, pp 203–225

    Google Scholar 

  • De Dijn B (2003) Vertical stratification of flying insects in a Surinam lowland rainforest. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests. Spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 110–122

    Google Scholar 

  • DeVries PJ, Walla TR (2001) Species diversity and community structure in neotropical fruit-feeding butterflies. Biol J Linn Soc 74:1–15

    Article  Google Scholar 

  • Didham RK, Ghazoul J, Stork NE, Davis AJ (1996) Insects in fragmented forests: a functional approach. Trends Ecol Evol 11:255–260

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible assymetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036

    Article  Google Scholar 

  • Erwin TL (1983) Tropical forest canopies: the last biotic frontier. Bull Ent Soc Am 29:14–19

    Google Scholar 

  • Finnamore A (1997) Long-term monitoring of arthropod fauna in the Lower Urubamba Region. In: Dallmeier F, Alonso A (eds) Biodiversity assessment and monitoring of the lower Urubamba region, Peru. San Martin-3 and Cashiriari-2 well sites. Smithsonina Institution, SI/MAB Biodiversity Program, Washington, D.C., pp 177–211

    Google Scholar 

  • Gadagkar R, Chandrashekara K, Nair P (1990) Insect species diversity in the tropics: sampling methods and a case study. J Bombay Nat Hist Soc 87:337–353

    Google Scholar 

  • Grassle JF, Smith W (1976) A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities. Oecologia 25:13–22

    Article  Google Scholar 

  • Jones DT, Eggelton P (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. J Appl Ecol 37:191–203

    Article  Google Scholar 

  • King JA, Porter SD (2005) Evaluation of sampling methods and species richness estimators for ants in upland ecosystems in Florida. Environ Entomol 34:1566–1578

    Article  Google Scholar 

  • Kirk WDJ (1984) Ecologically selective coloured traps. Ecol Entomol 9:35–41

    Article  Google Scholar 

  • Kitching RL, Li D, Stork NE (2001) Assessing biodiversity ‘sampling packages’: how similar are arthropod asemblages in different tropical rainforests? Biodiv Conserv 10:793–813

    Article  Google Scholar 

  • Kotze DJ, Samways MJ (1999) Support for the multi-taxa approach in biodiversity assessment, as shown by epigaeic invertebrates in an Afromontane forest archipelago. J Ins Conserv 3:125–143

    Article  Google Scholar 

  • Kremen C, Colwell RK, Erwin TL, Murphy DD, Noss RF, Sanjayan MA (1993) Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol 7:796–808

    Article  Google Scholar 

  • Kremen C, Merenlender AM, Murphy DD (1994) Ecological monitoring: a vital need for integrated conservation and development programs in the tropics. Conserv Biol 8:388–397

    Article  Google Scholar 

  • Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA, Stork NE, Srivastava DS, Watt AD (1998) Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391:72–76

    Article  CAS  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Lewis OT, Basset Y (2007) Insect conservation in tropical forests. In: Stewart AJA, New TR, Lewis OT (eds) Insect conservation biology. CABI Publishing, Wallingford, pp 34–56

    Google Scholar 

  • Longino JT, Colwell RC (1997) Biodiversity assessment using structured inventory: capturing the ant fauna of a tropical rain forest. Ecol Appl 7:1263–1277

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • May RM, Lawton JH, Stork NE (1995) Assessing extinction rates. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 1–24

    Google Scholar 

  • McCune B, Medford MJ (1999) Multivariate analysis of ecological data version 4.10. MjM Software, Gleneden Beach, Oregon

    Google Scholar 

  • Melbourne BA (1999) Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Aust J Ecol 24:228–239

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resource Institute, Washington

    Google Scholar 

  • Moran CV, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Anim Ecol 51:289–306

    Article  Google Scholar 

  • Moritz C, Richardson KS, Ferrier S, Monteith GB, Stanisic J, Williams SE, Whiffin T (2001) Biogeographical concordance and efficiency of taxon indicators for establishing conservation priority in a tropical rainforest biota. Proc R Soc Lond B 268:1875–1881

    Article  CAS  Google Scholar 

  • Muirhead-Thomson RC (1991) Trap responses of flying insects. Academic Press, London

    Google Scholar 

  • Niemelä J (2000) Biodiversity monitoring for decision-making. Ann Zool Fennici 37:307–317

    Google Scholar 

  • Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572

    Article  Google Scholar 

  • Noyes JS (1989) A study of five methods of sampling Hymenoptera (Insecta) in a tropical rainforest, with special reference to the Parasitica. J Nat Hist 23:285–298

    Article  Google Scholar 

  • Rohr JR, Mahan CG, Kim KC (2007) Developing a monitoring program for invertebrates: guidelines and a case study. Conserv Biol 21:422–433

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, LeRoy Poff N, Syrkes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Nature 287:1770–1774

    CAS  Google Scholar 

  • Southwood TRE, Henderson PA (2000) Ecological methods, 3rd edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Sparrow HR, Sisk TD, Ehrlich PR, Murphy DD (1994) Techniques and guidelines for monitoring Neotropical butterflies. Conserv Biol 8:800–809

    Article  Google Scholar 

  • Springate ND, Basset Y (1996) Diel activity of arboreal arthropods associated with Papua New Guinean trees. J Nat Hist 30:101–112

    Article  Google Scholar 

  • Stork NE (1994) Inventories of biodiversity: more than a question of numbers. In: Forey PL, Humphries CJ, Vane-Wright RI (eds) Systematics and conservation evaluation. Clarendon Press, Oxford, pp 81–100

    Google Scholar 

  • Stork NE, Brendell MJD (1993) Arthropod abundance in lowland rain forest of Seram. In: Edwards ID, MacDonald AA, Proctor J (eds) Natural history of Seram, Maluku, Indonesia. Intercept, Andover, pp 115–130

    Google Scholar 

  • Stork NE, Samways MJ, Eeley HAC (1995) Inventorying and monitoring biodiversity. Trends Ecol Evol 11:39–40

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for Canonican community ordination (Version 4). Mirocomputer Power, Ithaca

    Google Scholar 

  • Townes H (1972) A light-weight Malaise trap. Ent News 83:239–247

    Google Scholar 

  • Underwood EC, Fisher BL (2006) The role of ants in conservation monitoring: if, when and how. Biol Conserv 132:166–182

    Article  Google Scholar 

  • Watt AD, Stork NE, McBeath C, Lawson GL (1997) Impact of forest management on insect abundance and damage in a lowland tropical forest in southern Cameroon. J Appl Ecol 34:985–998

    Article  Google Scholar 

  • Wolda H, O’Brien CW, Stockwell HP (1998) Weevil diversity and seasonality in tropical Panama as deduced from light-trap catches (Coleoptera: Curculionoidea). Smiths Contr Zool 590:1–79

    Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

Download references

Acknowledgements

F. Dallmeier, J. Comiskey, M. Lee, J. Mavoungou and J. B. Mikissa helped to implement the project. Parataxonomists B. Amvame, N. Koumba, S. Mboumba Ditona, G. Moussavou, P. Ngoma, J. Syssou, L. Tchignoumba and E. Tobi collected, processed, sorted and data-based most of the insect material with great competence. J. Raymakers and S. Mboumba Ditona provided the vegetational data. M. Foldvari, S. W. Lingafelter and F. C. Thompson helped with pipunculid, cerambycid and syrphid identifications, respectively. V. Novotny commented on an early draft of the manuscript. The project was funded by the Smithsonian Institution, National Zoological Park, Conservation and Research Center/MAB Program through grants from the Shell Foundation and Shell Gabon. This is contribution No. 84 of the Gabon Biodiversity Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Basset.

Appendix A: Results of species indicator analysis with regard to sampling methods for the 151 most abundant higher taxa

Appendix A: Results of species indicator analysis with regard to sampling methods for the 151 most abundant higher taxa

Taxa

Method

Indicat. val. (%)

P-value

Acari

PT

54.8

0.001

Araneae

YPT

38.1

0.008

    Salticidae

YPT

65.7

0.001

Archaeognatha

    Meinertellidae

MT

14.3

0.755

Blattodea

FIT

37.7

0.219

Coleoptera

    Aderidae

FIT

62.8

0.008

    Anthicidae

YPT

52.2

0.032

    Anthribidae

FIT

69.8

0.001

    Bostrichidae

MT

28.7

0.280

    Bruchidae

MT

39.1

0.452

    Buprestidae

MT

78.0

0.001

    Carabidae

PT

68.7

0.001

    Cerambycidae

FIT

63.0

0.001

    Chrysomelidae

MT

32.9

0.746

    Clambidae

YPT

40.5

0.224

    Cleridae

FIT

78.9

0.002

    Coccinellidae

YPT

41.7

0.296

    Corylophidae

FIT

39.4

0.283

    Cucujoidea

PT

26.2

0.431

    Curculionidae

YPT

47.4

0.349

    Elateridae

PT

34.4

0.644

    Endomychidae

MT

74.7

0.013

    Eucnemidae

FIT

83.9

0.001

    Histeridae

YPT

43.2

0.109

    Hydrophilidae

PT

61.6

0.055

    Lagriidae

FIT

34.4

0.174

    Leiodidae

YPT

35.4

0.635

    Mordellidae

MT

44.4

0.076

    Mycetophagidae

FIT

26.5

0.337

    Nitidulidae

PT

54.5

0.011

    Phalacridae

FIT

40.7

0.062

    Pselaphidae

FIT

47.4

0.018

    Ptiliidae

PT

51.9

0.091

    Scarabaeidae

MT

37.8

0.480

    Scydmaenidae

FIT

35.3

0.461

    Scyrtidae

FIT

75.3

0.004

    Staphylinidae

PT

40.3

0.040

    Tenebrionidae

MT

41.8

0.247

    Trixagidae

FIT

81.7

0.001

Coleoptera: unknown

PT

39.9

0.103

Collembola

PT

48.6

0.019

    Entomobryidae

MT

39.2

0.112

Dermaptera

PT

82.2

0.002

Diplopoda

PT

67.7

0.009

Diptera

    Acalyptera

MT

47.2

0.034

    Anthomyiidae

MT

41.2

0.021

    Asilidae

MT

61.5

0.013

    Calliphoridae

YPT

47.4

0.047

    Calyptera

YPT

51.0

0.031

    Cecidomyiidae

MT

48.8

0.063

    Ceratopogonidae

MT

55.0

0.013

    Chironomidae

FIT

53.2

0.018

    Culicidae

MT

59.8

0.087

    Diopsidae

YPT

53.2

0.024

    Dolichopodidae

YPT

77.2

0.001

    Drosophilidae

YPT

43.8

0.035

    Empididae

YPT

52.2

0.180

    Limoniidae

MT

48.4

0.043

    Micropezidae

YPT

61.3

0.055

    Muscidae

YPT

25.6

0.194

    Mycetophilidae

MT

78.5

0.059

    Phoridae

MT

65.0

0.016

    Pipunculidae

MT

47.1

0.031

    Platystomatidae

YPT

38.4

0.088

    Psychodidae

MT

38.8

0.145

    Sarcophagidae

YPT

49.4

0.040

    Scatopsidae

MT

70.6

0.064

    Sciaridae

MT

45.8

0.014

    Stratiomyidae

YPT

48.6

0.023

    Syrphidae

MT

63.3

0.046

    Tabanidae

MT

81.9

0.001

    Tephritidae

MT

61.1

0.191

    Tipulidae

MT

54.9

0.021

    Diptera: unknown

YPT

61.9

0.011

Embioptera

YPT

31.2

0.300

Hemiptera (Heteropterans)

    Anthocoridae

FIT

34.2

0.171

    Ceratocombidae

FIT

42.5

0.029

    Coreidae

YPT

29.4

0.313

    Cydnidae

PT

40.8

0.225

    Lygaeidae

YPT

36.2

0.453

    Miridae

MT

36.7

0.232

    Reduvidae

MT

30.7

0.589

    Salpingidae

FIT

27.3

0.355

    Heteroptera: juveniles

FIT

21.4

0.863

    Heteroptera: unknown (Homopterans)

FIT

32.0

0.434

    Achilidae

FIT

53.4

0.040

    Aleyrodidae

MT

58.3

0.328

    Aphidoidea

YPT

54.5

0.098

    Aphrophoridae

YPT

78.9

0.010

    Cercopidae

YPT

46.7

0.043

    Cicadellidae

YPT

38.9

0.035

    Cixiidae

FIT

51.5

0.035

    Coccoidea

PT

40.6

0.081

    Delphacidae

YPT

74.5

0.012

    Derbidae

MT

57.2

0.043

    Fulgoridae

MT

25.6

0.395

    Meenoplidae

MT

57.8

0.079

    Psylloidea

FIT

49.3

0.008

    Fulgoroidea: juveniles

MT

39.0

0.419

Hymenoptera

    Apidae

MT

53.3

0.045

    Apoidea

MT

34.3

0.380

    Aulacidae

MT

46.9

0.045

    Bethylidae

MT

42.4

0.194

    Braconidae

MT

64.7

0.006

    Ceraphronidae

YPT

73.4

0.006

    Chalcididae

MT

65.9

0.014

    Chalcidoidea

MT

49.4

0.124

    Chrysididae

MT

42.6

0.035

    Crabronidae

MT

46.5

0.067

    Cynipoidea

MT

61.4

0.014

    Diapriidae

MT

42.1

0.237

    Elasmidae

MT

31.1

0.113

    Encyrtidae

YPT

73.3

0.001

    Eucoilidae

YPT

16.4

0.570

    Eupelmidae

MT

38.4

0.129

    Eurytomidae

MT

66.9

0.002

    Evaniidae

MT

72.3

0.002

    Formicidae

PT

66.6

0.001

    Halictidae

MT

54.4

0.086

    Ichneumonidae

YPT

58.5

0.045

    Mutilidae

YPT

42.7

0.171

    Platygastridae

MT

30.2

0.577

    Pompilidae

YPT

47.8

0.018

    Proctotrupoidea

MT

30.9

0.236

    Scelionidae

YPT

45.2

0.135

    Scoliidae

MT

62.2

0.001

    Sphecidae

YPT

54.2

0.007

    Tiphiidae

YPT

42.8

0.096

    Torymidae

MT

58.0

0.016

    Vespidae

YPT

50.1

0.029

    Hymenoptera: juveniles

MT

31.8

0.405

Isopoda

PT

57.5

0.029

Isoptera

FIT

39.0

0.139

    Termitidae

FIT

55.6

0.005

Lepidoptera

MT

54.5

0.017

    Geometridae

YPT

31.1

0.384

    Lepidoptera: juveniles

PT

39.7

0.192

Mantodea

MT

43.2

0.122

Neuroptera

    Coniopterygidae

FIT

78.3

0.001

    Myrmeleontidae

MT

68.1

0.007

Opiliones

MT

18.7

0.865

Orthoptera

    Acrididae

YPT

37.3

0.274

    Gryllidae

PT

73.0

0.001

    Pyrgomorphidae

PT

25.3

0.490

    Tetrigidae

PT

41.9

0.068

    Tettigoniidae

MT

33.1

0.362

    Tridactylidae

YPT

36.6

0.270

    Pseudoscorpiones

PT

21.6

0.521

    Psocoptera

FIT

47.5

0.043

    Thysanoptera

YPT

65.7

0.002

    Trichoptera

FIT

51.7

0.014

  1. Taxa are listed alphabetically by order, detailing the sampling method for which the maximum indicator value was recorded; the maximum indicator value; and the P-value of Monte Carlo permutations testing the statistical significance of the maximum indicator value. Indicator values for taxa indicated in bold are significant with P < 0.05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Missa, O., Basset, Y., Alonso, A. et al. Monitoring arthropods in a tropical landscape: relative effects of sampling methods and habitat types on trap catches. J Insect Conserv 13, 103–118 (2009). https://doi.org/10.1007/s10841-007-9130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-007-9130-5

Keywords

Navigation