Skip to main content

Advertisement

Log in

Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation—modulation of effective connectivity. Journal of Neurophysiology, 61(5), 900–917.

    PubMed  CAS  Google Scholar 

  • Berger, T. W., Ahuja, A., Courellis, S. H., Deadwyler, S. A., Erinjippurath, G., Gerhardt, G. A., et al. (2005). Restoring lost cognitive function. IEEE Engineering in Medicine and Biology Magazine, 24(5), 30–44.

    Article  PubMed  Google Scholar 

  • Berger, T. W., Song, D., Chan, R. H. M., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multioutput nonlinear dynamic modeling. Proceedings of the IEEE, 98(3), 356–374.

    Article  PubMed  CAS  Google Scholar 

  • Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017.

    Article  PubMed  Google Scholar 

  • Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., LaCoss, J., Wills, J., et al. (2012). A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation. IEEE Trans Neural Syst Rehabil Eng, in press.

  • Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural Computation, 14(2), 325–346.

    Article  PubMed  Google Scholar 

  • Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R., & Brown, E. N. (2011). Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data. [Article]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2), 121–135.

    Article  PubMed  Google Scholar 

  • de Boor, C. (1972). On calculating with B-splines. Journal of Approximation Theory, 6, 50–62.

    Article  Google Scholar 

  • Deadwyler, S. A., Bunn, T., & Hampson, R. E. (1996). Hippocampal ensemble activity during spatial delayed-nonmatch-to-sample performance in rats. Journal of Neuroscience, 16(1), 354–372.

    PubMed  CAS  Google Scholar 

  • Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.

    Article  Google Scholar 

  • Eldawlatly, S., Jin, R., & Oweiss, K. G. (2009). Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach. Neural Computation, 21(2), 450–477.

    Article  PubMed  Google Scholar 

  • Frank, I. E., & Friedman, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35(2), 109–135.

    Article  Google Scholar 

  • Fu, W. J. (1998). Penalized regression: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 7(3), 397–416.

    Google Scholar 

  • Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. Plos One, 4(8).

  • Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., & Gerstner, W. (2011). Extraction of network topology from multi-electrode recordings: is there a small-world effect? Frontiers in Computational Neuroscience, 5, 1–13.

    Article  Google Scholar 

  • Gerwinn, S., Macke, J. H., & Bethge, M. (2010). Bayesian inference for generalized linear models for spiking neurons. Frontiers in Computational Neuroscience, 4.

  • Gourevitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543.

    Article  PubMed  Google Scholar 

  • Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610–614. doi:10.1038/45154.

    Article  PubMed  CAS  Google Scholar 

  • Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424(6948), 552–556. doi:10.1038/Nature01834.

    Article  PubMed  CAS  Google Scholar 

  • Haslinger, R., Pipa, G., & Brown, E. (2010). Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking. Neural Computation, 22(10), 2477–2506.

    Article  PubMed  Google Scholar 

  • Hille, B. (1992). Ionic channels of excitable membranes. Sunderland: Sinauer Associates.

    Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12(5), 995–1007.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Ma, S., Xie, H., & Zhang, C.-H. (2009). A group bridge approach for variable selection. Biometrika, 96(4), 1024.

    Article  Google Scholar 

  • Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. Plos One, 6(11).

  • Johnston, D. (1999). Foundations of cellular neurophysiology. Cambridge: The MIT Press.

    Google Scholar 

  • Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Computation, 13(8), 1713–1720.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T. S. (2010). Accounting for network effects in neuronal responses using L1 regularized point process models. Advances in Neural Information Processing Systems (NIPS), 23, 1099–1107.

    Google Scholar 

  • Kim, S., Putrino, D., Ghosh, S., & Brown, E. N. (2011). A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity. Plos Computational Biology, 7(3).

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models (5th ed.). Boston: McGraw-Hill/Irwin.

    Google Scholar 

  • Li, W. X. Y., Chan, R. H. M., Zhang, W., Cheung, R. C. C., Song, D., & Berger, T. W. (2011). High-performance and scalable system architecture for the real-time estimation of generalized laguerre-volterra MIMO model from neural population spiking activity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(4), 489–501.

    Article  Google Scholar 

  • Li, L., Park, I. M., Seth, S., Sanchez, J. C., & Principe, J. C. (2012). Functional connectivity dynamics among cortical neurons: a dependence analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 18–30.

    Article  PubMed  Google Scholar 

  • Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21(6), 573–589.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (IEEE press series on biomedical engineering). Hoboken: Wiley-IEEE Press.

    Book  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Nedungadi, A. G., Rangarajan, G., Jain, N., & Ding, M. Z. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27(1), 55–64.

    Article  PubMed  Google Scholar 

  • Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Transactions on Information Theory, 18(4), 473–481.

    Article  Google Scholar 

  • Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17(9), 1927–1961.

    Article  PubMed  Google Scholar 

  • Paninski, L. (2003). Estimation of entropy and mutual information. Neural Computation, 15(6), 1191–1253.

    Article  Google Scholar 

  • Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Computation, 16(12), 2533–2561.

    Article  PubMed  Google Scholar 

  • Park, M., & Pillow, J. W. (2011). Receptive Field Inference with Localized Priors. Plos Computational Biology, 7(10).

  • Pillow, J. W., Paninski, L., Uzzell, V. J., Simoncelli, E. P., & Chichilnisky, E. J. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.

    Article  PubMed  CAS  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–999.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, C. J., Coleman, T. P., Kiyavash, N., & Hatsopoulos, N. G. (2011). Estimating the directed information to infer causal relationships in ensemble neural spike train recordings. Journal of Computational Neuroscience, 30(1), 17–44.

    Article  PubMed  Google Scholar 

  • Reed, J. L., & Kaas, J. H. (2010). Statistical analysis of large-scale neuronal recording data. Neural Networks, 23(6), 673–684.

    Article  PubMed  Google Scholar 

  • Schmidt, M., Fung, G., & Rosales, R. (2007). Fast optimization methods for L1 regularization: A comparative study and two new approaches. In J. N. Kok, J. Koronacki, R. L. DeMantaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Machine learning: ECML 2007, proceedings (Vol. 4701, pp. 286–297, lecture notes in artificial intelligence). Berlin: Springer-Verlag Berlin.

    Google Scholar 

  • Schmidt, M., Murphy, K., Fung, G., Rosales, R., & Ieee (2008). Structure learning in random fields for heart motion abnormality detection. In 2008 Ieee Conference on Computer Vision and Pattern Recognition, Vols 1–12 (pp. 203–210, Proceedings-Ieee Computer Society Conference on Computer Vision and Pattern Recognition).

  • Schumaker, L. (1980). Spline Functions: Basic Theory (American Scientist): Wiley.

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  Google Scholar 

  • So, K., Koralek, A. C., Ganguly, K., Gastpar, M. C., & Carmena, J. M. (2012). Assessing functional connectivity of neural ensembles using directed information. Journal of Neural Engineering, 9(2), 026004.

    Article  PubMed  Google Scholar 

  • Song, D., & Berger, T. W. (2009). Identification of nonlinear dynamics in neural population activity. In K. G. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology. Boston: McGraw-Hill/Irwin.

    Google Scholar 

  • Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54(6 Pt 1), 1053–1066.

    Article  PubMed  Google Scholar 

  • Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009a). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22(9), 1340–1351.

    Article  PubMed  Google Scholar 

  • Song, D., Marmarelis, V. Z., & Berger, T. W. (2009b). Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study. Journal of Computational Neuroscience, 26(1), 1–19.

    Article  PubMed  Google Scholar 

  • Song, D., Wang, Z., Marmarelis, V. Z., & Berger, T. W. (2009c). Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: experimental study. Journal of Computational Neuroscience, 26(1), 21–37.

    Article  PubMed  Google Scholar 

  • Song, D., Chan, R.H.M., Marmarelis, V.Z., Hampson, R.E., Deadwyler, S.A., & Berger, T.W. (2011). Estimation and statistical validation of event-invariant nonlinear dynamic models of hippocampal CA3-CA1 population activities. Proceedings of the IEEE EMBS Conference, 3330–3333.

  • Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Kording, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Member, L. E. M., & Kording, K. P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(3), 203–213.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B (Methodological), 58(1), 267–288.

    Google Scholar 

  • Truccolo, W., & Donoghue, J. P. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural Computation, 19(3), 672–705.

    Article  PubMed  Google Scholar 

  • Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93(2), 1074–1089.

    Article  PubMed  Google Scholar 

  • Tu, C. Y., Song, D., Breidt, F. J., Berger, T. W., & Wang, H. (2012). Functional model selection for sparse binary time series with multiple inputs. In S. H. Holan, W. R. Bell, & T. S. McElroy (Eds.), Economic time series: Modeling and seasonality. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J. W., Kulkarni, J., Litke, A. M., et al. (2012). Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience, 33(1), 97–121.

    Article  PubMed  Google Scholar 

  • Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B (Statistical Methodology), 68, 49–67.

    Article  Google Scholar 

  • Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(4), 336–352.

    Article  PubMed  Google Scholar 

  • Zhao, M. Y., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z., Kalmar, R., et al. (2012). An L (1)-regularized logistic model for detecting short-term neuronal interactions. Journal of Computational Neuroscience, 32(3), 479–497.

    Article  PubMed  CAS  Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dong Song, Vasilis Z. Marmarelis, Robert E. Hampson, Sam A. Deadwyler, and Theodore W. Berger were supported in part by the Defense Advanced Research Projects Agency (DARPA) through the Restorative Encoding Memory Integration Neural Device (REMIND) Program, and in part by the National Science Foundation (NSF) through the Biomimetic Microelectronic Systems Engineering Research Center (BMES-ERC).

Dong Song, Vasilis Z. Marmarelis, and Theodore W. Berger were supported in part by the National Institutes of Health (NIH) through the National Institute of Biomedical Imaging and BioEngineering (NIBIB).

Catherine Y. Tu and Haonan Wang were supported in part by the NSF through DMS-0706761, DMS-0854903, and DMS-1106975.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Song.

Additional information

Action Editor: Liam Paninski

Appendix

Appendix

Derivation of matrix R

$$ g\left(\theta (t)\right)={c}_0+\phi {(t)}^Tc $$
$$ l\left(y\Big|X\right)={\displaystyle \sum_{t=1}^Ty(t) \ln \theta (t)+\left(1-y(t)\right) \ln \left(1-\theta (t)\right)} $$
$$ \begin{array}{ll}\frac{\partial }{\partial {c}_i}l\left(y\Big|X\right)\hfill & ={\displaystyle \sum_{t=1}^T\left[\frac{y(t)}{\theta (t)}-\frac{1-y(t)}{1-\theta (t)}\right]}\left(\frac{\partial \theta (t)}{\partial {c}_i}\right)\hfill \\ {}\hfill & ={\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\left(\frac{\partial \theta (t)}{\partial {c}_i}\right)\hfill \end{array} $$

For logit link function, we have

$$ \begin{array}{c}\hfill \theta (t)=\frac{1}{1+ \exp \left\{-{c}_0-\phi {(t)}^Tc\right\}}\hfill \\ {}\hfill \frac{\partial \theta (t)}{\partial {c}_i}=\frac{ \exp \left\{-{c}_0-\phi {(t)}^Tc\right\}{\phi}_i(t)}{{\left(1+ \exp \left\{-{c}_0-\phi {(t)}^Tc\right\}\right)}^2}=\theta (t)\left(1-\theta (t)\right){\phi}_i(t)\hfill \\ {}\frac{\partial }{\partial {c}_i}l\left(y\Big|X\right)={\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]\left(\frac{\partial \theta (t)}{\partial {c}_i}\right)}\hfill \\ {}\hfill ={\displaystyle \sum_{t=1}^T\left[y(t)-\theta (t)\right]}{\phi}_i(t)\hfill \\ {}\frac{\partial^2}{\partial {c}_i\partial {c}_j}l\left(y\Big|X\right)=\frac{\partial }{\partial {c}_j}{\displaystyle \sum_{t=1}^T\left[y(t)-\theta (t)\right]{\phi}_i(t)}\hfill \\ {}\hfill ={\displaystyle \sum_{t=1}^T\left[-\frac{\partial }{\partial {c}_j}\theta (t)\right]}{\phi}_i(t)\hfill \\ {}\hfill =-{\displaystyle \sum_{t=1}^T\theta (t)\left(1-\theta (t)\right)}{\phi}_i(t){\phi}_j(t)\hfill \end{array} $$

where ϕ i denotes the ith column of ϕ (denoted as v in the main text).

Thus, we have

$$ {\nabla}^2l\left(y\Big|X\right)=-{\varPhi}^T R\varPhi $$

where

$$ \varPhi ={\left(\begin{array}{ccc}\hfill {\phi}_1(1)\hfill & \hfill \cdots \hfill & \hfill {\phi}_1(T)\hfill \\ {}\hfill \vdots \hfill & \hfill \ddots \hfill & \hfill \vdots \hfill \\ {}\hfill {\phi}_{NJ}(1)\hfill & \hfill \cdots \hfill & \hfill {\phi}_{NJ}(T)\hfill \end{array}\right)}^T,R=\left(\begin{array}{ccc}\hfill \theta (1)\left(1-\theta (1)\right)\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \theta (T)\left(1-\theta (T)\right)\hfill \end{array}\right) $$

For probit link function, we have θ(t) = F{c 0 + ϕ(t)T c}, where F is the normal cumulative distribution function in Eq. (5). \( \frac{\partial \theta (t)}{\partial {c}_i}=f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t) \), where f is the normal density function.

$$ \begin{array}{l}\begin{array}{c}\hfill \frac{\partial }{\partial {c}_i}l\left(y\Big|X\right)={\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\left(\frac{\partial \theta (t)}{\partial {c}_i}\right)\hfill \\ {}\hfill ={\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill \frac{\partial^2}{\partial {c}_i\partial {c}_j}l\left(y\Big|X\right)=\frac{\partial }{\partial {c}_j}{\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill ={\displaystyle \sum_{t=1}^T\frac{\partial }{\partial {c}_j}}\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \end{array}\\ {}\begin{array}{ccccc}\hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill & \hfill +{\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\frac{\partial }{\partial {c}_j}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \end{array}\end{array} $$

Since

$$ \begin{array}{l}{\displaystyle \sum_{t=1}^T\frac{\partial }{\partial {c}_j}}\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\\ {}\begin{array}{lllll}\hfill & \hfill & \hfill & \hfill & ={\displaystyle \sum_{t=1}^T\frac{\partial }{\partial {c}_j}\left[\frac{y(t)}{\theta (t)\left(1-\theta (t)\right)}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & -{\displaystyle \sum_{t=1}^T\frac{\partial }{\partial {c}_j}\left[\frac{1}{1-\theta (t)}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & ={\displaystyle \sum_{t=1}^T\left[\frac{-y(t)\left(1-2\theta (t)\right)}{\theta {(t)}^2{\left(1-\theta (t)\right)}^2}\frac{\partial \theta (t)}{\partial {c}_j}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & -{\displaystyle \sum_{t=1}^T\left[\frac{1}{{\left(1-\theta (t)\right)}^2}\frac{\partial \theta (t)}{\partial {c}_j}\right]}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & ={\displaystyle \sum_{t=1}^T\left[\frac{-y(t)\left(1-2\theta (t)\right)}{\theta {(t)}^2{\left(1-\theta (t)\right)}^2}\right]}f{\left\{{c}_0+\phi {(t)}^Tc\right\}}^2{\phi}_i(t){\phi}_j(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & -{\displaystyle \sum_{t=1}^T\left[\frac{1}{{\left(1-\theta (t)\right)}^2}\right]}f{\left\{{c}_0+\phi {(t)}^Tc\right\}}^2{\phi}_i(t){\phi}_j(t)\hfill \\ {}\hfill & \hfill & \hfill & \hfill & ={\varPhi}^T{R}_1\varPhi +{\varPhi}^T{R}_2\varPhi \hfill \end{array}\end{array} $$

where

$$ \begin{array}{c}\hfill {R}_1=\left(\begin{array}{ccc}\hfill \left[\frac{-y(1)\left(1-2\theta (1)\right)}{\theta {(1)}^2{\left(1-\theta (1)\right)}^2}\right]f{\left\{{c}_0+\phi {(1)}^Tc\right\}}^2\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \left[\frac{-y(T)\left(1-2\theta (T)\right)}{\theta {(T)}^2{\left(1-\theta (T)\right)}^2}\right]f{\left\{{c}_0+\phi {(T)}^Tc\right\}}^2\hfill \end{array}\right)\hfill \\ {}\hfill {R}_2=\left(\begin{array}{ccc}\hfill -\left[\frac{1}{{\left(1-\theta (1)\right)}^2}\right]f{\left\{{c}_0+\phi {(1)}^Tc\right\}}^2\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill -\left[\frac{1}{{\left(1-\theta (T)\right)}^2}\right]f{\left\{{c}_0+\phi {(T)}^Tc\right\}}^2\hfill \end{array}\right)\hfill \end{array} $$

In addition, we have

$$ \begin{array}{l}{\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\frac{\partial }{\partial {c}_j}f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t)\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill \end{array}=-{\displaystyle \sum_{t=1}^T\left[\frac{y(t)-\theta (t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\left({c}_0+\phi {(t)}^Tc\right)f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t){\phi}_j(t)\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill \end{array}=-{\displaystyle \sum_{t=1}^T\left[\frac{y(t)}{\theta (t)\left(1-\theta (t)\right)}\right]}\left({c}_0+\phi {(t)}^Tc\right)f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t){\phi}_j(t)\\ {}\begin{array}{ccc}\hfill \begin{array}{cc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill \end{array}+{\displaystyle \sum_{t=1}^T\left[\frac{1}{1-\theta (t)}\right]}\left({c}_0+\phi {(t)}^Tc\right)f\left\{{c}_0+\phi {(t)}^Tc\right\}{\phi}_i(t){\phi}_j(t)\\ {}\begin{array}{cccc}\hfill \begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}\hfill & \hfill \hfill & \hfill \hfill & \hfill \hfill \end{array}={\varPhi}^T{R}_3\varPhi +{\varPhi}^T{R}_4\varPhi \end{array} $$

Where

$$ \begin{array}{c}\hfill {R}_3=\left(\begin{array}{ccc}\hfill -\left[\frac{y(1)}{\theta (1)\left(1-\theta (1)\right)}\right]\left({c}_0+\phi {(1)}^Tc\right)f\left\{{c}_0+\phi {(1)}^Tc\right\}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill -\left[\frac{y(T)}{\theta (T)\left(1-\theta (T)\right)}\right]\left({c}_0+\phi {(T)}^Tc\right)f\left\{{c}_0+\phi {(T)}^Tc\right\}\hfill \end{array}\right)\hfill \\ {}\hfill {R}_4=\left(\begin{array}{ccc}\hfill \left[\frac{1}{1-\theta (1)}\right]\left({c}_0+\phi {(1)}^Tc\right)f\left\{{c}_0+\phi {(1)}^Tc\right\}\hfill & \hfill \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \ddots \hfill & \hfill \hfill \\ {}\hfill \hfill & \hfill \hfill & \hfill \left[\frac{1}{1-\theta (T)}\right]\left({c}_0+\phi {(T)}^Tc\right)f\left\{{c}_0+\phi {(T)}^Tc\right\}\hfill \end{array}\right)\hfill \end{array} $$

Thus, we have

∇ 2 l(y|X) = Φ T , where R = R 1 + R 2 + R 3 + R 4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, D., Wang, H., Tu, C.Y. et al. Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions. J Comput Neurosci 35, 335–357 (2013). https://doi.org/10.1007/s10827-013-0455-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0455-7

Keywords

Navigation