Skip to main content
Log in

Testing for significance of phase synchronisation dynamics in the EEG

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A number of tests exist to check for statistical significance of phase synchronisation within the Electroencephalogram (EEG); however, the majority suffer from a lack of generality and applicability. They may also fail to account for temporal dynamics in the phase synchronisation, regarding synchronisation as a constant state instead of a dynamical process. Therefore, a novel test is developed for identifying the statistical significance of phase synchronisation based upon a combination of work characterising temporal dynamics of multivariate time-series and Markov modelling. We show how this method is better able to assess the significance of phase synchronisation than a range of commonly used significance tests. We also show how the method may be applied to identify and classify significantly different phase synchronisation dynamics in both univariate and multivariate datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alba, A., Marroquin, J.L., Pena, J., Harmony, T., Gonzalez-Frankenberger, B. (2007). Exploration of event-induced EEG phase synchronization patterns in cognitive tasks using a time-frequency-topography visualization system. Journal of Neuroscience Methods, 161(1), 166–182. doi:10.1016/jneumeth.2006.10.018. ISSN 0165-0270.

    Article  PubMed  Google Scholar 

  • Allefeld, C., & Kurths, J. (2004). Testing for phase synchronization. International Journal of Bifurcation and Chaos, 14(2), 405–416.

    Article  Google Scholar 

  • Allefeld, C., Müller, M., Kurths, J. (2007). Eigenvalue decomposition as a generalized synchronization cluster analysis. International Journal of Bifurcation and Chaos, 17(10), 3493–3497. doi:10.1142/S0218127407019251. ISSN 0218-1274.

    Article  Google Scholar 

  • Ani, D., Cuesta-Frau, T., Al Ani, M., Aboy, M.P., Mico, L. (2004). Speech recognition methods applied to biomedical signals processing. In EMBS international conference, San Francisco, USA (Vol. 26, pp. 1–4).

  • Arch, M., Rosenblum, M.G., Pikovsky, A.S., Kurths, J. (1996). Phase synchronization of chaotic oscillators. Physical Review Letters, 1(3), 2–5.

    Google Scholar 

  • Chumbley, J.R., & Friston, K.J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44(1), 62–70. doi:10.1016/j.neuroimage.2008.05.021. ISSN 1095-9572.

    Article  PubMed  Google Scholar 

  • Daly, I., Nasuto, S.J., Warwick, K. (2011). Brain computer interface control via functional connectivity dynamics. Pattern Recognition, 45(6), 2123–2136. doi:10.1016/j.patcog.2011.04.034.

    Article  Google Scholar 

  • Efron, B., Tibshirani, R., Tibshirani, R.J. (1993). An introduction to the bootstrap. CRC Press. ISBN 0412042312.

  • Engel, A.K., König, P., Kreiter, A.K., Schillen, T.B., Singer, W. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends in Neurosciences, 15(6), 218–226. ISSN 0166-2236.

    Article  PubMed  CAS  Google Scholar 

  • Friston, K., & David, O. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755.

    Article  PubMed  Google Scholar 

  • Genovese, C., & Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 499–517. doi:10.1111/1467-9868.00347. ISSN 13697412.

    Article  Google Scholar 

  • Gross, J., Pollok, B., Dirks, M., Timmermann, L., Butz, M., Schnitzler, A. (2005). Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage, 26(1), 91–98. doi:10.1016/j.neuroimage.2005.01.025. ISSN 1053-8119.

    Article  PubMed  CAS  Google Scholar 

  • Ito, J., Nikolaev, A.R., van Leeuwen, C. (2007). Dynamics of spontaneous transitions between global brain states. Human Brain Mapping, 28(9), 904–913. doi:10.1002/hbm.20316. ISSN 1065-9471.

    Article  PubMed  Google Scholar 

  • Jelinek, F., Bahl, L., Mercer, R. (1975). Design of a linguistic statisitical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, IT-21, 250–256.

    Article  Google Scholar 

  • Jensen, O., & Tesche, C.D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. The European Journal of Neuroscience, 15(8), 1395–1399. ISSN 0953-816X.

    Article  PubMed  Google Scholar 

  • Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. ISSN 1065-9471.

    Article  PubMed  CAS  Google Scholar 

  • Lachaux, J.P., Rodriguez, E., Quyen, M.L.V., Lutz, A., Martinerie, J., Varela, F.J. (2000). Studying single-trials of phase synchronous activity in the brain. International Journal of Bifurcation and Chaos, 10(10), 2429–2439.

    Article  Google Scholar 

  • Le Van Quyen, M. (2001). Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. Journal of Neuroscience Methods, 111(2), 83–98. doi:10.1016/S0165-0270(01)00372-7. ISSN 01650270.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, D., Strik, W.K., Henggeler, B., Koenig, T., Koukkou, M. (1998). Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 29(1), 1–11. ISSN 0167-8760.

    Article  CAS  Google Scholar 

  • Mallat, S. (2009). A wavelet tour of signal processing: The sparse way. Burlingdon, MA: Academic.

    Google Scholar 

  • Mardia, K.V., & Jupp, P.E. (2000). Directional statistics (2nd ed.). Wiley.

  • Menon, V., Freeman, W.J., Cutillo, B.A., Desmond, J.E., Ward, M.F., Bressler, S.L., Laxer, K.D., Barbaro, N., Gevins, A.S. (1996). Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalography and Clinical Neurophysiology, 98(2), 89–102. doi:10.1016/0013-4694(95)00206-5. ISSN 00134694.

    Article  PubMed  CAS  Google Scholar 

  • Mizuhara, H., Wang, L.Q., Kobayashi, K., Yamaguchi, Y. (2004). A long-range cortical network emerging with theta oscillation in a mental task. Neuroreport, 15(8), 1233–1238. ISSN 0959-4965.

    Article  PubMed  Google Scholar 

  • Murphy, K. (1998). Hidden markov model (HMM) toolbox for matlab. http://www.cs.ubc.ca/murphyk/Software/HMM/hmm.html.

  • Nunez, P.L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford University Press. http://books.google.com/books?id=V1LuaISgSzgC&pgis=1.

  • Pfurtscheller, G. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2–3), 65–68. doi:10.1016/S0304-3940(97)00889-6. ISSN 03043940.

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller, G., & Lopes da Silva, F.H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842–1857. doi:10.1016/S1388-2457(99)00141-8. ISSN 13882457.

    Article  PubMed  CAS  Google Scholar 

  • Rabiner, L.R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. doi:10.1109/5.18626. ISSN 00189219.

    Article  Google Scholar 

  • Rabiner, L.R., & Juang, B.H. (1986). An introduction to hidden Markov models. IEEE Acoustics, Speech & Signal Processing Magazine, 3, 4–16.

    Google Scholar 

  • Rubinov, M., & Sporns, O. (2009). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069. doi:10.1016/j.neuroimage.2009.10.003. ISSN 1095-9572.

    Article  PubMed  Google Scholar 

  • Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews, 32(5), 1001–1013. doi:10.1016/j.neubiorev.2008.03.014. ISSN 0149-7634.

    Article  PubMed  Google Scholar 

  • Schelter, B., Winterhalder, M., Timmer, J., Peifer, M. (2007). Testing for phase synchronization. Physics Letters A, 366(4–5), 382–390. doi:10.1016/j.physleta.2007.01.085. ISSN 03759601.

    Article  CAS  Google Scholar 

  • Sheskin, D. (2004). Handbook of parametric and nonparametric statistical procedures. CRC Press. ISBN 1584884401.

  • Singh, A.K., & Phillips, S. (2010). Hierarchical control of false discovery rate for phase locking measures of EEG synchrony. NeuroImage, 50(1), 40–47. doi:10.1016/j.neuroimage.2009.12.030. ISSN 1095-9572.

    Article  PubMed  Google Scholar 

  • Stam, C.J. (2005). Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 116(10), 2266–301. doi:10.1016/j.clinph.2005.06.011. ISSN 1388-2457.

    Article  CAS  Google Scholar 

  • Sweeney-Reed, C.M., Howroyd, J.D., Andrade, A.D.O., Nasuto, S.J. (2005). Empirical mode decomposition for isolation of neural assemblies underlying cognitive acts. In IEEE engineering in medicine and biology student society (EMBSS) UKRI postgraduate conference on biomedical engineering and medical physics, University of Reading, UK (pp. 21–22).

  • Sweeney-Reed, C.M., & Nasuto, S.J. (2007). A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of Computational Neuroscience, 23(1), 79–111.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney-Reed, C.M., & Nasuto, S.J. (2009). Detection of neural correlates of self-paced motor activity using empirical mode decomposition phase locking analysis. Journal of Neuroscience Methods, 184(1), 54–70. doi:10.1016/j.jneumeth.2009.07.023. ISSN 1872-678X.

    Article  PubMed  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Delpuech, C., Pernier, J. (1996). Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of Neuroscience, 16(13), 4240–4249.

    PubMed  CAS  Google Scholar 

  • Tass, P., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.-J. (1998). Detection of n:m phase locking from noisy data: application to magnetoencephalography. Physical Review Letters, 81(15), 3291–3294.

    Article  CAS  Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Doynefarmer, J. (1992). Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena, 58(1–4), 77–94. doi:10.1016/0167-2789(92)90102-S. ISSN01672789.

    Article  Google Scholar 

  • Uguz, H., Arslan, A., Turkoglu, I. (2007). A biomedical system based on hidden Markov model for diagnosis of the heart valve diseases. Pattern Recognition Letters, 28, 395–404.

    Article  Google Scholar 

  • Vogel, R.M., & Shallcross, A.L. (1996). The moving blocks bootstrap versus parametric time series models. Water Resources, 32(6), 1875–1882.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Peter beim Graben for his many helpful comments and input throughout this work and Dr Brendan Z. Allison for proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Daly.

Additional information

Action Editor: Gaute T Einevoll

Appendices

Appendix A: Semi-Markov models

To use a Semi-markov model two problems must be solved. The first of these is to identify, for a given set of trials, what the optimal associated prior, ε, transition Γ, and duration D probabilities are. The second problem is how to identify, for a given trial and two or more candidate models, which model is most likely to have generated that trial.

Because there is no hidden layer in the model the first problem may be estimated directly. The number of presentations of each label in each trial, the number of transitions from each label to each other label, the durations of each label and the number of times the first label in a given trial is equal to a particular value may be counted. Transition probabilities and prior probabilities may then be estimated via a maximum likelihood framework. Sojourn time probabilities may be estimated against a distribution. In this study the truncated normal distribution is chosen based upon the observed distribution of state durations in the datasets investigated in this study.

To solve the second problem the forward algorithm for HMMs is adapted to accommodate state sojourn time probabilities. Formally, the forward variable is defined as

$$ \alpha_t(q,l) = P(y_{t-l+1:t} | q,l) \sum\limits_{q'}\sum\limits_{l'} P(q,l|q',l')\alpha_{t-l}(q',l'), $$
(40)

where P(y t − l + 1:t | q,l) denotes the probability of continuing to produce observations y for l steps given that the current state is q and the current length of duration in that state is l.

As with a HMM the forward variable may be solved by induction. Note that, as with HMMs, initial parameters are again drawn from uniform distributions.

  1. 1.

    Initialise the variable:

    $$ \alpha_0^*(j) = \pi_{(j)}. $$
    (41)
  2. 2.

    Induction:

    $$ \alpha_{t}(j) = \sum\limits_{d} P(y_{t-d+1:t} | j,d) P(d|j) \alpha_{t-d}^*(j), $$
    (42)
    $$ \alpha_t^*(j) = \sum\limits_i \alpha_t(i) a_{i,j}. $$
    (43)
  3. 3.

    Terminate:

    $$ P(O|\lambda) = \sum\limits_{i = 1}^N \alpha_T(i). $$
    (44)

The termination step to the forward variable calculation provides the solution to the second problem, the probability of a set of observations given a particular model. If a range of candidate models λ i , i = 1,...,M are available, each trained on EEG recorded under a different condition, then the forward algorithm may be used to calculate P(O|λ i ) for all M models. The most likely model is the one that yields the highest likelihood of the data sequence (assuming the priors for each model are equally likely). The data sequence is then classified as being recorded under the same conditions on which the model was trained.

Appendix B: Algorithm

The algorithm applied to model the dynamics of phase synchronisation by combining GPS with Markov modelling is summarised here. All development is done in Matlab version 7.11.

  1. 1.

    For each EEG channel calculate the instantaneous phase according to Eq. (3).

  2. 2.

    Reference the instantaneous phase to the phase on a reference channel as per Eq. (5).

  3. 3.

    At each sample point put the references phases on each channel into a phase vector (see Eq. (6)).

  4. 4.

    Calculate the instantaneous instability index via Eq. (7) and one of the Eqs. (8), (9), (10), or (11). Note, Eq. (11) is shown, in Section 5.1, to be prefereable.

  5. 5.

    Segment the instantaneous instability index into global phase synchronisation periods at points where the \(50^{\mbox{th}}\) percentile is crossed according to Eqs. (12) and (13).

  6. 6.

    Cluster the GPS segments via K-means clustering with K = 6.

  7. 7.

    Train either an HMM on the GPS sequence or an SMM (as detailed in Appendix A).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daly, I., Sweeney-Reed, C.M. & Nasuto, S.J. Testing for significance of phase synchronisation dynamics in the EEG. J Comput Neurosci 34, 411–432 (2013). https://doi.org/10.1007/s10827-012-0428-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0428-2

Keywords

Navigation