Skip to main content
Log in

Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A methodology for nonlinear modeling of multi-input multi-output (MIMO) neuronal systems is presented that utilizes the concept of Principal Dynamic Modes (PDM). The efficacy of this new methodology is demonstrated in the study of the dynamic interactions between neuronal ensembles in the Pre-Frontal Cortex (PFC) of a behaving non-human primate (NHP) performing a Delayed Match-to-Sample task. Recorded spike trains from Layer-2 and Layer-5 neurons were viewed as the “inputs” and “outputs”, respectively, of a putative MIMO system/model that quantifies the dynamic transformation of multi-unit neuronal activity between Layer-2 and Layer-5 of the PFC. Model prediction performance was evaluated by means of computed Receiver Operating Characteristic (ROC) curves. The PDM-based approach seeks to reduce the complexity of MIMO models of neuronal ensembles in order to enable the practicable modeling of large-scale neural systems incorporating hundreds or thousands of neurons, which is emerging as a preeminent issue in the study of neural function. The “scaling-up” issue has attained critical importance as multi-electrode recordings are increasingly used to probe neural systems and advance our understanding of integrated neural function. The initial results indicate that the PDM-based modeling methodology may greatly reduce the complexity of the MIMO model without significant degradation of performance. Furthermore, the PDM-based approach offers the prospect of improved biological/physiological interpretation of the obtained MIMO models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, L. F. (1999). Lapique’s introduction of the integrate-and-fire model neuron. Brain Research Bulletin, 50, 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge, UK: Cambridge University Press.

  • Aftanas, L. I., & Golocheikine, S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neuroscience Letters, 310, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural Networks. Cambridge, UK: Cambridge University Press.

  • Anderson, J. A. (1996). An Introduction to Neural Networks. Cambridge, MA: MIT Press.

  • Anderson, C. H., & Eliasmith C. (2004). Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems (Computational Neuroscience). Cambridge, MA: MIT Press.

  • Anderson, C., & Horne, J. A. (2003). Prefrontal cortex: links between low frequency delta EEG in sleep and neuropsychological performance in healthy, older people. Psychophysiology, 40, 349–357.

    Article  PubMed  Google Scholar 

  • Arbib, M. A. (2003). The Handbook of brain Theory and Neural Networks. Cambridge, MA: MIT Press.

  • Atencio, C. A., & Schreiner, C. E. (2008). Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. Journal of Neuroscience, 28, 3897–3910.

    Article  PubMed  CAS  Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2010). Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS One, 5(3), e9521.

    Article  PubMed  Google Scholar 

  • Baker, S. N., Kilner, J. M., Pinches, E. M., & Lemon, R. N. (1999). The role of synchrony and oscillations in the motor output. Experimental Brain Research, 128, 109–117.

    Article  CAS  Google Scholar 

  • Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., & Brown, E. N. (2001). Construction and analysis of non-Poisson stimulus response models of neural spike train activity. Journal of Neuroscience Methods, 105, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Berger, T. W., Eriksson, J. L., Ciarolla, D. A., & Sclabassi, R. J. (1988). Nonlinear systems analysis of the hippocampal perforant path-dentate system. II. Effects of random train stimulation. Journal of Neurophysiology, 60, 1077–1094.

    Google Scholar 

  • Berger, T. W., & Glanzman, D. L. (2005). Toward replacement parts for the brain: Implantable biomimetic electronics as the next era in neural prosthetics. Cambridge, MA: MIT Press.

  • Berger, T. W., Chauvet, G., & Sclabassi, R. J. (1994). A biological based model of functional properties of the hippocampus. Neural Networks, 7, 1031–1064.

    Article  Google Scholar 

  • Berger, T. W., Baudry, M., Brinton, R. D., Liaw, J. S., Marmarelis, V. Z., Park, A. Y., Sheu, B. J., & Tanguay, A. R. (2001). Brain-implantable biomimetic electronics as the next era in neural prosthetics. Proceedings of the IEEE, 89, 993–1012.

    Google Scholar 

  • Berger, T. W., Song, D., Chan, R. H., & Marmarelis, V. Z. (2010). The neurobiological basis of cognition: identification by multi-input, multi-output nonlinear dynamic modeling. Proceedings of the IEEE, 98, 356–374.

    Article  PubMed  CAS  Google Scholar 

  • Berger, T. W., Hampson, R. E., Song, D., Goonawardena, A., Marmarelis, V. Z., & Deadwyler, S. A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8, 046017.

    Article  PubMed  Google Scholar 

  • Berger, T. W., Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., LaCoss, J., Wills, J., & Granacki, J. J. (2012). A hippocampal cognitive prosthesis: Multi-Input. Multi-Output nonlinear modeling and VLSI implementation. IEEE Transactions Neural Systems and Rehabilitation Engineering, 20(2), 198–211.

    Article  Google Scholar 

  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2, 947–957.

    Article  PubMed  CAS  Google Scholar 

  • Brandenberger, G. (2003). The ulradien rhythm of sleep: diverse relations with pituitary and adrenal hormones. Revue Neurologique, 159(11), S5–S10.

    Google Scholar 

  • Brockwell, A. E., Rojas, A. L., & Kass, R. E. (2004). Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 91, 1899–1907.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. N., Kass, R. E., & Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7, 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. (2005). Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15, 827–840.

    Article  PubMed  Google Scholar 

  • Churchland, P. S., & Sejnowski, T. J. (1999). The Computational Brain. Cambridge, MA: MIT Press.

  • Citron, M. C., & Emerson, R. C. (1983). White noise analysis of cortical directional selectivity in cat. Brain Research, 279, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Citron, M. C., Kroeker, J. P., & McCann, G. D. (1981). Nonlinear interactions in ganglion cell receptive fields. Journal of Neurophysiology, 46, 1161–1176.

    PubMed  CAS  Google Scholar 

  • Citron, M., Emerson, R. C., & Levick, W. R. (1988). Nonlinear measurement and classification of receptive fields in cat retinal ganglion cells. Annals of Biomedical Engineering, 16, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Cottaris, N. P., & De Valois, R. L. (1998). Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature, 395, 896–900.

    Article  PubMed  CAS  Google Scholar 

  • Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize Local Field Potential activity in the striatum of awake behaving monkeys. Journal of Neuroscience, 23, 11741–11752.

    PubMed  CAS  Google Scholar 

  • Dan, Y., Alonso, J. M., Usrey, W. M., & Reid, R. C. (1998). Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nature Neuroscience, 1, 501–507.

    Article  PubMed  CAS  Google Scholar 

  • David, S. V., & Gallant, J. L. (2005). Predicting neuronal responses during natural vision. Network, 16, 239–260.

    Article  PubMed  Google Scholar 

  • Deadwyler, S. A., & Hampson, R. E. (1995). Ensemble activity and behavior: What's the code? Science, 270, 1316–1318.

  • Deadwyler, S. A., & Hampson, R. E. (2004). Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron, 42, 465–476.

    Article  PubMed  CAS  Google Scholar 

  • Deadwyler, S. A., & Hampson, R. E. (2006). Temporal coupling between subicular and hippocampal neurons underlies retention of trial-specific events. Behavioural Brain Research, 174, 272–280.

    Article  PubMed  CAS  Google Scholar 

  • Dimoka, A., Courellis, S. H., Gholmieh, G., Marmarelis, V. Z., & Berger, T. W. (2008). Modeling the nonlinear properties of the in vitro hippocampal perforant path-dentate system using multi-electrode array technology. IEEE Transactions on Biomedical Engineering, 55, 693–702.

    Article  PubMed  Google Scholar 

  • Dobson, A. J. (2002). An Introduction to Generalized Linear Models. Boca Raton, Florida: Chapman &Hall/CRC Press.

  • Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G., & Gaal, G. (1998). Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology, 79, 159–173.

    PubMed  CAS  Google Scholar 

  • Eeckman, F. H. (1992). Neural Systems: Analysis and Modeling.

  • Eggermont, J. J. (1993). Wiener and Volterra analyses applied to the auditory system. Hearing Research, 66, 177–201.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J., Aertsen, A. M. H. J., & Johannesma, P. I. M. (1983). Quantitative characterization procedure for auditory neurons based on the spectro-temporal receptive field. Hearing Research, 10, 167–190.

    Article  PubMed  CAS  Google Scholar 

  • Ekstrom, A. D., Caplan, J., Ho, E., Shattuck, K., Fried, I., & Kahana, M. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15, 881–889.

    Article  PubMed  Google Scholar 

  • Emerson, R. C., Citron, M. C., Vaughn, W. J., & Klein, S. A. (1987). Nonlinear directionally selective subunits in complex cells of cat striate cortex. Journal of Neurophysiology, 58, 33–65.

    PubMed  CAS  Google Scholar 

  • Emerson, R. C., Bergen, J. R., & Adelson, E. H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research, 32, 203–218.

    Article  PubMed  CAS  Google Scholar 

  • Fetz, E. E., Chen, D., Murthy, V. N., & Matsumura, M. (2000). Synaptic interactions mediating synchrony and oscillations in primate sensorimotor cortex. Journal of Physiology, Paris, 94, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • FitzHugh, R. (1955). Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biophysics, 17, 257–278.

    Article  Google Scholar 

  • FitzHugh, R. (1969). Mathematical models of excitation and propagation in nerve. Chapter 1 (pp. 1–85 in H.P. Schwan, ed. Biological Engineering, New York, NY: McGraw-Hill.

  • Fox, S. E., Wolfson, S., & Ranck, J. B. J. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Experimental Brain Research, 62, 495–508.

    Article  CAS  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Science, 9, 474–480.

    Article  Google Scholar 

  • Fries, P., Nikolic, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Gabor, S., Hangya, B., Hernadi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed. Journal of Neuroscience, 30, 13578–13585.

    Article  Google Scholar 

  • Gale, J. T., Martinez-Rubio, C., Sheth, S. A., & Eskandar, E. N. (2011). Intra-operative behavioral tasks in awake humans undergoing deep brain stimulation surgery. Journal of Visualized Experiments.

  • Hampson, R. E., & Deadwyler, S. A. (2003). Temporal firing characteristics and the strategic role of subicular neurons in short-term memory. Hippocampus, 13, 529–541.

    Article  PubMed  Google Scholar 

  • Hampson, R. E., Pons, T. P., Stanford, T. R., & Deadwyler, S. A. (2004). Categorization in the monkey hippocampus: a possible mechanism for encoding information into memory. Proceedings of the National Academy of Sciences, 101, 3184–3189.

    Article  CAS  Google Scholar 

  • Hampson, R. E., Simeral, J. D., Berger, T. W., Song, D., Chan, R. H. M., & Deadwyler, S. A. (2011). Cognitively relevant recording in hippocampus: Beneficial feedback of ensemble codes in a closed loop paradigm. In R. P. Vertes & R. W. Stackman (Eds.), Electrophysiological Recording Techniques (pp. 215–240). New York: Humana Press.

    Chapter  Google Scholar 

  • Hampson, R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Fuqua, J., Gerhardt, G. A., Shin, D., Marmarelis, V. Z., Berger, T. W., & Deadwyler, S. A. (2012). A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. IEEE Transactions Neural Systems and Rehabilitation Engineering, 20(2), 184–197.

    Article  Google Scholar 

  • Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–817.

    Article  PubMed  Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R.G. (1991). Introduction to the theory of neural computation. Addison-Wesley.

  • Hille, B. (2001). Ionic Channels of Excitable Membranes (3rd ed.). Sinauer Associates.

  • Hindmarsh, J. L., & Rose, R. M. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London, Series B: Biological Sciences, 221, 87–102.

    Article  CAS  Google Scholar 

  • Hobson, J., & Pace-Schott, E. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3, 679–693.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79(8), 2554–2558.

    Article  Google Scholar 

  • Hyman, J., Zilli, E., Paley, A., & Hasselmo, M. (2005). Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus, 15, 739–749.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: Geometry of excitability and bursting. Cambridge, MA: MIT Press.

  • Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. Proceedings of the National Academy of Science, 105, 3593–3598.

    Article  CAS  Google Scholar 

  • Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. NeuroImage, 15, 978–987.

    Article  Google Scholar 

  • Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity in Humans. Journal of Neuroscience, 27, 3839–3844.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, O., et al. (2002). Oscillations in the alpha band increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12, 877–882.

    Article  PubMed  Google Scholar 

  • Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D., & Wu, S. (1997). Foundations of cellular neurophysiology. Cambridge, MA: MIT Press.

  • Jones, M. W., & Wilson, M. A. (2005). Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biology, 3, e402.

    Article  PubMed  Google Scholar 

  • Kahana, M. J. (2006). The cognitive correlates of human brain oscillations. Journal of Neuroscience, 26, 1669–1672.

    Article  PubMed  CAS  Google Scholar 

  • Kiss, T., Hoffmann, W. E., & Hajós, M. (2011). Delta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia. International Journal of Neuropsychopharmacology, 14, 29–42.

    Article  PubMed  CAS  Google Scholar 

  • Klimesch, W., et al. (1998). Induced alpha-band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C. (1999). Biophysics of computation: Information processing in single neurons. Oxford, UK: Oxford University Press.

  • Koch, C., & Segev, I. (1989). Methods in neuronal modeling: From synapses to networks. Cambridge, MA: MIT Press.

  • Lebedev, M. A., & Nelson, R. J. (1995). Rhythmically firing (20–50 Hz) neurons in monkey primary somatosensory cortex: activity patterns during initiation of vibratory-cued hand movements. Journal of Comparative Neuroscience, 2, 313–334.

    Article  CAS  Google Scholar 

  • Lewicki, M. S. (2008). Bayesian modeling and classification of neural signals. Neural Computation, 6, 1005–1030.

    Article  Google Scholar 

  • Lewis, E. R., & van Dijk, P. (2004). New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons. Hearing Research, 189, 120–136.

    Article  PubMed  Google Scholar 

  • Lytton, W. W. (2008). Computer modeling of epilepsy. Nature Reviews Neuroscience, 9, 626–637.

    Article  PubMed  CAS  Google Scholar 

  • MacKay, D. J. C. (1995). Probable networks and plausible predictions—a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3), 469–505.

    Article  Google Scholar 

  • Marmarelis, V. Z. (1993). Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomedical Engineering, 21, 573.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z. (1997). Modeling methodology for nonlinear physiological systems. Annals of Biomedical Engineering, 25, 239.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems, Wiley Interscience & IEEE Press.

  • Marmarelis, V. Z., & Berger, T. W. (2005). General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences, 196, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, P. Z., & Marmarelis, V.Z. (1978). Analysis of physiological systems: The white-noise approach. Plenum Press.

  • Marmarelis, P. Z., & Naka, K.-I. (1972). White-noise analysis of a neuron chain: application of the Wiener theory. Science, 175, 1276–1278.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, P. Z., & Naka, K.-I. (1973). Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. Parts I, II and III. Journal of Neurophysiology, 36, 605–648.

    PubMed  CAS  Google Scholar 

  • Marmarelis, P. Z., & Naka, K.-I. (1974). Identification of multi-input biological systems. IEEE Transactions on Biomedical Engineering, 21, 88–101.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z., & Orme, M. E. (1993). Modeling of neural systems by use of neuronal modes. IEEE Transactions on Biomedical Engineering, 40, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V. Z., Zanos, T. P., & Berger, T. W. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part I: theory and simulations. Annals of Biomedical Engineering, 37, 1654–1667.

    Article  PubMed  Google Scholar 

  • Marmarelis, V. Z., Shin, D. C., Song, D., Hampson, R. E., Deadwyler, S. A., & Berger T.W. (2011). Dynamic nonlinear modeling of interactions between neuronal ensembles using Principal Dynamic Modes. Proc. 33rd Intern. IEEE-EMBS Conf., paper 920, Boston.

  • Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, V. N., & Fetz, E. E. (1992). Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 89, 5670–5674.

    Article  PubMed  CAS  Google Scholar 

  • Murthy, V. N., & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. Journal of Neurophysiology, 76, 3949–3982.

    PubMed  CAS  Google Scholar 

  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50, 2061–2070.

    Article  Google Scholar 

  • Opris, I., Hampson, R. E., Stanford, T. R., Gerhardt, G. A., & Deadwyler, S. A. (2011). Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. Journal of Cognitive Neuroscience, 23, 1507–1521.

    Article  PubMed  Google Scholar 

  • Pack, C. C., Conway, B. R., Born, R. T., & Livingstone, M. S. (2006). Spatiotemporal structure of nonlinear subunits in macaque visual cortex. Journal of Neuroscience, 26, 893–907.

    Article  PubMed  CAS  Google Scholar 

  • Rieke, F., Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997). Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rigosa, J., Weber, D. J., Prochazka, A., Stein, R. B., & Micera, S. (2011). Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications. Journal of Neural Engineering, 8, 046019.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., & Kahana, M. J. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100, 7931–7936.

    Article  PubMed  CAS  Google Scholar 

  • Roopun, A. K., Cunningham, M. O., Racca, C., Alter, K., Traub, R. D., & Whittington, M. A. (2008). Region-specific changes in Gamma and Beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophrenia Bulletin, 34, 962–973.

    Article  PubMed  Google Scholar 

  • Rosenblatt, F. (1962). Principles of neurodynamics. Spartan Books.

  • Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences of the United States of America, 90, 4470–4474.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E. (1990). Computational neuroscience. Cambridge, MA: MIT Press.

  • Siapas, A., Lubenov, E., & Wilson, M. (2005). Prefrontal phase locking to hippocampal theta oscillations. Neuron, 46, 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(49–65), 111–125.

    Google Scholar 

  • Song, D., Chan, R. H., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2007). Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Biomedical Engineering, 54, 1053–1066.

    Article  PubMed  Google Scholar 

  • Song, D., Chan, R. H. M., Marmarelis, V. Z., Hampson, R. E., Deadwyler, S. A., & Berger, T. W. (2009). Nonlinear modeling of neural population dynamics for hippocampal prostheses. Neural Networks, 22, 1340–1351.

    Article  PubMed  Google Scholar 

  • Theunissen, F., Roddey, J. C., Stufflebeam, S., Clague, H., & Miller, J. P. (1996). Information theoretic analysis of dynamical encoding by four identified interneurons in the cricket cercal system. Journal of Neurophysiology, 75, 1345–1364.

    PubMed  CAS  Google Scholar 

  • Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short term memory. Hippocampus, 15, 923–935.

    Article  PubMed  CAS  Google Scholar 

  • Victor, J. D., & Brown, E. N. (2003). Information and statistical structure in spike trains. Network: Computation in Neural Systems, 14, 1–4.

    Article  Google Scholar 

  • von Stein, A., & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.

    Article  Google Scholar 

  • Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.

    Article  Google Scholar 

  • Wu, M. C., David, S. V., & Gallant, J. L. (2006). Complete functional characterization of sensory neurons by system identification. Annual Review of Neuroscience, 29, 477–505.

    Article  PubMed  CAS  Google Scholar 

  • Zanos, T. P., Courellis, S. H., Berger, T. W., Hampson, R. E., Deadwyler, S. A., & Marmarelis, V. Z. (2008). Nonlinear modeling of causal interrelationships in neuronal ensembles. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16, 336–352.

    Article  PubMed  Google Scholar 

  • Zanos, T. P., Hampson, R. E., Deadwyler, S. A., Berger, T. W., & Marmarelis, V. Z. (2009). Boolean modeling of neural systems with point-process inputs and outputs. Part II: application to the rat hippocampus. Annals of Biomedical Engineering, 37, 1668–1682.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156, 238–246.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DARPA contracts N66601-09-C-2080 and N66601-09-C-2081, NSF grant EEC-0310723, and NIH grant NIBIB P41-EB001978 to the Biomedical Simulations Resource at USC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Z. Marmarelis.

Additional information

Action Editor: Lance M. Optican

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmarelis, V.Z., Shin, D.C., Song, D. et al. Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes. J Comput Neurosci 34, 73–87 (2013). https://doi.org/10.1007/s10827-012-0407-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0407-7

Keyword

Navigation