Skip to main content
Log in

Dipole characterization of single neurons from their extracellular action potentials

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The spatial variation of the extracellular action potentials (EAP) of a single neuron contains information about the size and location of the dominant current source of its action potential generator, which is typically in the vicinity of the soma. Using this dependence in reverse in a three-component realistic probe + brain + source model, we solved the inverse problem of characterizing the equivalent current source of an isolated neuron from the EAP data sampled by an extracellular probe at multiple independent recording locations. We used a dipole for the model source because there is extensive evidence it accurately captures the spatial roll-off of the EAP amplitude, and because, as we show, dipole localization, beyond a minimum cell-probe distance, is a more accurate alternative to approaches based on monopole source models. Dipole characterization is separable into a linear dipole moment optimization where the dipole location is fixed, and a second, nonlinear, global optimization of the source location. We solved the linear optimization on a discrete grid via the lead fields of the probe, which can be calculated for any realistic probe + brain model by the finite element method. The global source location was optimized by means of Tikhonov regularization that jointly minimizes model error and dipole size. The particular strategy chosen reflects the fact that the dipole model is used in the near field, in contrast to the typical prior applications of dipole models to EKG and EEG source analysis. We applied dipole localization to data collected with stepped tetrodes whose detailed geometry was measured via scanning electron microscopy. The optimal dipole could account for 96% of the power in the spatial variation of the EAP amplitude. Among various model error contributions to the residual, we address especially the error in probe geometry, and the extent to which it biases estimates of dipole parameters. This dipole characterization method can be applied to any recording technique that has the capabilities of taking multiple independent measurements of the same single units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ainsworth, A., Dostrovsky, J. O., Merrill, E. G., & Millar, J. (1977). An improved method for insulating tungsten micro-electrodes with glass [proceedings]. Journal of Physiology, London, 269, 4P–5P.

    CAS  Google Scholar 

  • Aur, D., & Jog, M. S. (2006). Building spike representation in tetrodes. Journal of Neuroscience Methods, 157, 364–373.

    Article  PubMed  Google Scholar 

  • Aur, D., Connolly, C. I., & Jog, M. S. (2005). Computing spike directivity with tetrodes. Journal of Neuroscience Methods, 149, 57–63.

    Article  PubMed  Google Scholar 

  • Bartho, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsaki, G. (2004). Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of Neurophysiology, 92, 600–608.

    Article  PubMed  Google Scholar 

  • Bédard, C., & Destexhe, A. (2009). Macroscopic models of local field potentials and the apparent 1/f noise in brain activity. Biophysical Journal, 96, 2589–2603.

    Article  PubMed  Google Scholar 

  • Bédard, C., Kroger, H., & Destexhe, A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical Journal, 86, 1829–1842.

    Article  PubMed  Google Scholar 

  • Bédard, C., Kroger, H., & Destexhe, A. (2006). Model of low-pass filtering of local field potentials in brain tissue. Physical Review. E: Statistical, Nonlinear, and Soft Matter Physics, 73, 051911.

    Article  Google Scholar 

  • Blanche, T. J., Spacek, M. A., Hetke, J. F., & Swindale, N. V. (2005). Polytrodes: High-density silicon electrode arrays for large-scale multiunit recording. Journal of Neurophysiology, 93, 2987–3000.

    Article  PubMed  Google Scholar 

  • Blanche, T. J., Hetherington, P. A., Rennie, C. J., Spacek, M. A., Swindale, N. V. (2003). Model-based 3d cortical neuron localization and classification with silicon electrode arrays. 2003 Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience, 2003 Online: Program No. 429.419

  • Butson, C. R., & McIntyre, C. C. (2006). Role of electrode design on the volume of tissue activated during deep brain stimulation. Journal of Neural Engineering, 3, 1–8.

    Article  PubMed  Google Scholar 

  • Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience, 7, 446–451.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G., & Kandel, A. (1998). Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. Journal of Neurophysiology, 79, 1587–1591.

    PubMed  CAS  Google Scholar 

  • Chelaru, M. I., & Jog, M. S. (2005). Spike source localization with tetrodes. Journal of Neuroscience Methods, 142, 305–315.

    Article  PubMed  Google Scholar 

  • Cohen, I., & Miles, R. (2000). Contributions of intrinsic and synaptic activities to the generation of neuronal discharges in in vitro hippocampus. Journal of Physiology, London, 524(Pt 2), 485–502.

    Article  CAS  Google Scholar 

  • Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Bartho, P., et al. (2003). Massively parallel recording of unit and local field potentials with silicon-based electrodes. Journal of Neurophysiology, 90, 1314–1323.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. The Journal of Neuroscience, 19, 4595–4608.

    PubMed  CAS  Google Scholar 

  • Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J., & Bement, S. L. (1988). Performance of planar multisite microprobes in recording extracellular single-unit Intracortical activity. IEEE Transactions on Biomedical Engineering, 35, 719–732.

    Article  PubMed  CAS  Google Scholar 

  • Du, J., Riedel-Kruse, I. H., Nawroth, J. C., Roukes, M. L., Laurent, G., & Masmanidis, S. C. (2009). High-resolution three-dimensional extracellular recording of neuronal activity with microfabricated electrode arrays. Journal of Neurophysiology, 101, 1671–1678.

    Article  PubMed  Google Scholar 

  • Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41, 2251.

    Article  PubMed  CAS  Google Scholar 

  • Gerstein, G. L., & Clark, W. A. (1964). Simultaneous studies of firing patterns in several neurons. Science, 143, 1325–1327.

    Article  Google Scholar 

  • Gold, C., Henze, D. A., & Koch, C. (2007). Using extracellular action potential recordings to constrain compartmental models. Journal of Computational Neuroscience, 23, 39–58.

    Article  PubMed  Google Scholar 

  • Gold, C., Henze, D. A., Koch, C., & Buzsaki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of Neurophysiology, 95, 3113–3128.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M., Maldonado, P. E., Wilson, M., & McNaughton, B. (1995). Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. Journal of Neuroscience Methods, 63, 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, P. C., & Oleary, D. P. (1993). The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal of Scientific Computing, 14, 1487–1503.

    Article  Google Scholar 

  • Helmholtz H (1853a) Ueber einige Gesetze der Vertheilung electrischer Stroeme in Koerperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche (I).,". Ann der Phys und Chemie (Leipzig, 3rd ser) 89:211–233

  • Helmholtz H (1853b) Ueber einige Gesetze der Vertheilung electrischer Stroeme in Koerperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche (II),". Ann der Phys und Chemie (Leipzig, 3rd ser) 89:353–377

  • Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., & Buzsaki, G. (2000). Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology, 84, 390–400.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H. (1957). Tungsten microelectrode for recording from single units. Science, 125, 549–550.

    Article  PubMed  CAS  Google Scholar 

  • Jog, M. S., Connolly, C. I., Kubota, Y., Iyengar, D. R., Garrido, L., Harlan, R., et al. (2002). Tetrode technology: Advances in implantable hardware, neuroimaging, and data analysis techniques. Journal of Neuroscience Methods, 117, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. W., Dang, H., & Nenadic, Z. (2007). An efficient algorithm for current source localization with tetrodes. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, 2007, 1282–1285.

    Google Scholar 

  • Li, C. L., Bak, A. F., & Parker, L. O. (1968). Specific resistivity of the cerebral cortex and white matter. Experimental Neurology, 20, 544–557.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis, N. K., Kayser, C., & Oeltermann, A. (2007). In Vivo measurement of cortical impedance spectrum in monkeys: Implications for signal propagation. Neuron, 55, 809–823.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Aguado, L., Ibarz, J. M., & Herreras, O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: Modulation of evoked potentials. Neuroscience, 108, 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Maldonado, P. E., Godecke, I., Gray, C. M., & Bonhoeffer, T. (1997). Orientation selectivity in pinwheel centers in cat striate cortex. Science, 276, 1551–1555.

    Article  PubMed  CAS  Google Scholar 

  • Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism. New York: Oxford University Press.

    Google Scholar 

  • McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    Article  PubMed  Google Scholar 

  • McNaughton, B. L., O'Keefe, J., & Barnes, C. A. (1983). The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. Journal of Neuroscience Methods, 8, 391–397.

    Article  PubMed  CAS  Google Scholar 

  • Mechler, F., Hu, Q., Ohiorhenuan, I. E., Schmid, A. M., Victor, J. D. (2011). Three-dimensional localization of neurons in cortical tetrode recordings. J Neurophysiol. doi:10.1152/jn.00515.2010.

  • Milstein, J. N., & Koch, C. (2008). Dynamic moment analysis of the extracellular electric field of a biologically realistic spiking neuron. Neural Computation, 20, 2070–2084.

    Article  PubMed  Google Scholar 

  • Mitzdorf, U. (1985). Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiological Reviews, 65, 37–100.

    PubMed  CAS  Google Scholar 

  • Moffitt, M. A., & McIntyre, C. C. (2005). Model-based analysis of cortical recording with silicon microelectrodes. Clinical Neurophysiology, 116, 2240–2250.

    Article  PubMed  Google Scholar 

  • Musial, P. G., Baker, S. N., Gerstein, G. L., King, E. A., & Keating, J. G. (2002). Signal-to-noise ratio improvement in multiple electrode recording. Journal of Neuroscience Methods, 115, 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Nordhausen, C. T., Maynard, E. M., & Normann, R. A. (1996). Single unit recording capabilities of a 100 microelectrode array. Brain Research, 726, 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Pettersen, K. H., & Einevoll, G. T. (2008). Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophysical Journal, 94, 784–802.

    Article  PubMed  CAS  Google Scholar 

  • Plonsey, R. (1963). Reciprocity applied to volume conductors and Ecg. IEEE Transactions on Biomedical Engineering, 10, 9–12.

    PubMed  CAS  Google Scholar 

  • Plonsey, R., & Heppner, D. B. (1967). Considerations of quasi-stationarity in electrophysiological systems. The Bulletin of Mathematical Biophysics, 29, 657–664.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.

    Article  PubMed  CAS  Google Scholar 

  • Ranck, J. B., Jr. (1963). Specific impedance of rabbit cerebral cortex. Experimental Neurology, 7, 144–152.

    Article  PubMed  Google Scholar 

  • Robinson, D. A. (1968). Electrical properties of metal microelectrodes. Proceedings of Institute of Electrical and Electronics Engineers, 56, 1065–1071.

    CAS  Google Scholar 

  • Rosenthal, F., Woodbury, J. W., & Patton, H. D. (1966). Dipole characteristics of pyramidal cell activity in cat postcruciate cortex. Journal of Neurophysiology, 29, 612–625.

    PubMed  CAS  Google Scholar 

  • Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87, 387–406.

    PubMed  CAS  Google Scholar 

  • Somogyvari, Z., Zalanyi, L., Ulbert, I., & Erdi, P. (2005). Model-based source localization of extracellular action potentials. Journal of Neuroscience Methods, 147, 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. Washington: Winston & Sons.

    Google Scholar 

  • Vigmond, E. J., Perez Velazquez, J. L., Valiante, T. A., Bardakjian, B. L., & Carlen, P. L. (1997). Mechanisms of electrical coupling between pyramidal cells. Journal of Neurophysiology, 78, 3107–3116.

    PubMed  CAS  Google Scholar 

  • Wei, X. F., & Grill, W. M. (2005). Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. Journal of Neural Engineering, 2, 139–147.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant EY9314 (JDV, FM).

We thank Qin Hu, Ifije Ohiorhenuan, Mike Repucci and Anita Schmid for their help in the data collection; Dirk Hoehl and Thomas Recording Gmbh for their consistently reliable tetrodes; Dr Stephen B. Doty and Tony Labassiere of Analytical Microscopy Core Facility, Hospital for Special Surgery New York, NY, for the scanning electron-microscopy; and Drs Partha Mitra and Alexander Polyakov for stimulating early discussions and introducing the use of Femlab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Mechler.

Additional information

Action Editor: Alain Destexhe

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 124 kb)

ESM 2

(PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mechler, F., Victor, J.D. Dipole characterization of single neurons from their extracellular action potentials. J Comput Neurosci 32, 73–100 (2012). https://doi.org/10.1007/s10827-011-0341-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0341-0

Keywords

Navigation