Skip to main content

Advertisement

Log in

Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Because of its highly branched dendrite, the Purkinje neuron requires significant computational resources if coupled electrical and biochemical activity are to be simulated. To address this challenge, we developed a scheme for reducing the geometric complexity; while preserving the essential features of activity in both the soma and a remote dendritic spine. We merged our previously published biochemical model of calcium dynamics and lipid signaling in the Purkinje neuron, developed in the Virtual Cell modeling and simulation environment, with an electrophysiological model based on a Purkinje neuron model available in NEURON. A novel reduction method was applied to the Purkinje neuron geometry to obtain a model with fewer compartments that is tractable in Virtual Cell. Most of the dendritic tree was subject to reduction, but we retained the neuron’s explicit electrical and geometric features along a specified path from spine to soma. Further, unlike previous simplification methods, the dendrites that branch off along the preserved explicit path are retained as reduced branches. We conserved axial resistivity and adjusted passive properties and active channel conductances for the reduction in surface area, and cytosolic calcium for the reduction in volume. Rallpacks are used to validate the reduction algorithm and show that it can be generalized to other complex neuronal geometries. For the Purkinje cell, we found that current injections at the soma were able to produce similar trains of action potentials and membrane potential propagation in the full and reduced models in NEURON; the reduced model produces identical spiking patterns in NEURON and Virtual Cell. Importantly, our reduced model can simulate communication between the soma and a distal spine; an alpha function applied at the spine to represent synaptic stimulation gave similar results in the full and reduced models for potential changes associated with both the spine and the soma. Finally, we combined phosphoinositol signaling and electrophysiology in the reduced model in Virtual Cell. Thus, a strategy has been developed to combine electrophysiology and biochemistry as a step toward merging neuronal and systems biology modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berridge, M., Lipp, P., & Bootman, M. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Bhalla, U., Bilitch, D., & Bower, J. (1992). Rallpacks: a set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.

    Article  PubMed  CAS  Google Scholar 

  • Booth, V., Rinzel, J., & Kiehn, O. (1997). Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol, 78, 3371–3385.

    Google Scholar 

  • Bower, J. M. & Beeman, D. (2003) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (Free Internet Version). New York, New York: Springer-Verlag.

  • Bower, J., & Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods Mol Biol, 401, 103–125.

    Article  PubMed  Google Scholar 

  • Brown, S., Morgan, F., Watras, J., & Loew, L. M. (2008). Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar Purkinje spines. Biophysical Journal, 95, 1795–1812.

    Article  PubMed  CAS  Google Scholar 

  • Burke, R., Fyffe, R., & Moschovakis, A. (1994). Electrotonic architecture of cat gamma motoneurons. J Neurophysiol, 72, 2302–2316.

    PubMed  CAS  Google Scholar 

  • Bush, P., & Sejnowski, T. (1993). Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods, 46, 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Clements, J., & Redman, S. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol, 409, 63–87.

    Google Scholar 

  • De Schutter, E., & Bower, J. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.

    PubMed  Google Scholar 

  • De Smedt, H., Missiaen, L., Parys, J., Henning, R., Sienaert, I., Vanlingen, S., et al. (1997). Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. The Biochemical Journal, 322(Pt 2), 575–583.

    PubMed  Google Scholar 

  • Destexhe, A., Babloyantz, A., & Sejnowski, T. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio, E., Orsi, L., Godani, M., Vaula, G., Jensen, S., Salmon, E., et al. (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum.

  • Douglas, R., & Martin, K. (1993). Exploring cortical microcircuits: A combined anatomical, physiological, and computational approach. In T. McKenna et al. (Eds.), Single neuron computation (pp. 381–412). Orlando, FL: Academic Press.

    Google Scholar 

  • Finch, E., & Augustine, G. (1998). Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature, 396, 753–756.

    Article  PubMed  CAS  Google Scholar 

  • Fleshman, J., Segev, I., & Burke, R. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol, 60, 60–85.

    Google Scholar 

  • Gilbert, P., & Thach, W. (1977). Purkinje cell activity during motor learning. Brain Research, 128, 309–328.

    Article  PubMed  CAS  Google Scholar 

  • Hara, K., Shiga, A., Nozaki, H., Mitsui, J., Takahashi, Y., Ishiguro, H., et al. (2008). Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology, 71, 547–551.

    Article  PubMed  CAS  Google Scholar 

  • Harris, K., & Stevens, J. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. The Journal of Neuroscience, 8, 4455–4469.

    PubMed  CAS  Google Scholar 

  • Hendrickson, E., Edgerton, J., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci.

  • Hernjak, N., Slepchenko, B. M., Fernald, K., Fink, C. C., Fortin, D., Moraru, I. I., et al. (2005). Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar purkinje cells. Biophysical Journal, 89, 3790–3806.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki, A., Kawano, Y., Miura, S., Shibata, H., Matsuse, D., Li, W., et al. (2008). Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. Journal of Medical Genetics, 45, 32–35.

    Article  PubMed  CAS  Google Scholar 

  • Konnerth, A., Dreessen, J., & Augustine, G. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 7051–7055.

    Article  PubMed  CAS  Google Scholar 

  • Loew, L., & Schaff, J. (2001). The virtual cell: a software environment for computational cell biology. Trends in Biotechnology, 19, 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Major, G., Larkman, A., Jonas, P., Sakmann, B., & Jack, J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.

    PubMed  CAS  Google Scholar 

  • Manor, Y., Gonczarowski, J., & Segev, I. (1991). Propagation of action potentials along complex axonal trees. Model and implementation. Biophys J, 60, 1411–1423.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., et al. (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1, 4, 5-trisphosphate receptor. Nature, 379, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D., & Huguenard, J. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol, 68, 1384–1400.

    Google Scholar 

  • Miyasho, T., Takagi, H., Suzuki, H., Watanabe, S., Inoue, M., Kudo, Y., et al. (2001). Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research, 891, 106–115.

    Article  PubMed  CAS  Google Scholar 

  • Moraru, I. I., Schaff, J. C., Slepchenko, B. M., & Loew, L. M. (2002). The virtual cell: an integrated modeling environment for experimental and computational cell biology. Annals of the New York Academy of Sciences, 971, 595–596.

    Article  PubMed  Google Scholar 

  • Napper, R., & Harvey, R. (1988a). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. The Journal of Comparative Neurology, 274, 168–177.

    Article  PubMed  CAS  Google Scholar 

  • Napper, R., & Harvey, R. (1988b). Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum. The Journal of Comparative Neurology, 274, 158–167.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, H., Matsumoto, M., & Mikoshiba, K. (2001). Motor discoordination in mutant mice heterozygous for the type 1 inositol 1, 4, 5-trisphosphate receptor. Behavioural Brain Research, 122, 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Pinsky, P., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci, 1, 39–60.

    Google Scholar 

  • RALL, W. (1962). Electrophysiology of a dendritic neuron model. Biophysical Journal, 2, 145–167.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9, 1483–1508.

    Google Scholar 

  • Rall, W., Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J, 13, 648–687.

    Google Scholar 

  • Rall, W., & Agmon-Snir, H. (1998). Cable theory for dendritic neurons. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge: MIT.

  • Rapp, M., Yarom, Y., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4, 518–533.

    Google Scholar 

  • Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje-cells. Journal of Physiology, London, 474, 101–118.

    CAS  Google Scholar 

  • Regehr, W., & Mintz, I. (1994). Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron, 12, 605–613.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophys J, 14, 759–790.

    Article  PubMed  CAS  Google Scholar 

  • Sarkisov, D., & Wang, S. (2008). Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. The Journal of Neuroscience, 28, 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Schaff, J., Fink, C., Slepchenko, B., Carson, J., & Loew, L. (1997). A general computational framework for modeling cellular structure and function. Biophysical Journal, 73, 1135–1146.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, D. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience, 14, 111–131.

    Article  PubMed  CAS  Google Scholar 

  • Stratford, K., Mason, A., Larkman, A., Major, G., Jack, J. (1989). The modelling of pyramidal neurones in the visual cortex. In: The Computing Neuron (Durbin, R. et al., eds), pp 296-321 London, England: Addison-Wesley.

  • Street, V., Bosma, M., Demas, V., Regan, M., Lin, D., Robinson, L., et al. (1997). The type 1 inositol 1, 4, 5-trisphosphate receptor gene is altered in the opisthotonos mouse. The Journal of Neuroscience, 17, 635–645.

    PubMed  CAS  Google Scholar 

  • Takechi, H., Eilers, J., & Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature, 396, 757–760.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R., Wong, R., Miles, R., Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol, 66, 635–650.

    Google Scholar 

  • van de Leemput, J., Chandran, J., Knight, M., Holtzclaw, L., Scholz, S., Cookson, M., et al. (2007). Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genetics, 3, e108.

    Article  PubMed  Google Scholar 

  • Wang, S., Denk, W., & Häusser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature Neuroscience, 3, 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, M. (2008). Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. The Tohoku Journal of Experimental Medicine, 214, 175–190.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fei Gao and Anuradha Lakshminarayana for help and support in various aspects of this work. We are also pleased to acknowledge Dr. Corey Acker, Dr. James Watras, Dr. Ann Cowan, and other members of the R. D. Berlin Center for Cell Analysis & Modeling at the University of Connecticut Health Center for helpful discussions.

This research was supported by grants R01 MH086638, P41 RR013186 and U54 RR022232 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Loew.

Additional information

Action Editor: Upinder Singh Bhalla

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 125 kb)

ESM 2

(PDF 1267 kb)

ESM 3

(HOC 0 kb)

ESM 4

(HOC 0 kb)

ESM 5

(HOC 93 kb)

ESM 6

(HOC 4 kb)

ESM 7

(SES 2 kb)

ESM 8

(XLS 316 kb)

ESM 9

(VCML 2167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, SA., Moraru, I.I., Schaff, J.C. et al. Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. J Comput Neurosci 31, 385–400 (2011). https://doi.org/10.1007/s10827-011-0317-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0317-0

Keywords

Navigation