Skip to main content
Log in

Theoretical circuit modeling of tetra bands DNG metamaterial by transmission line theory with very small frequency

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Double-negative metamaterial characteristics are achieved through microstrip technology in a compact dielectric substrate at four different frequency bands of the minimal frequency ratio. The presented metamaterial is examined in two separate configurations of parallel and orthogonal feed. The circuit model of proposed metamaterial for both the cases is developed and projected in this paper. Moreover, the dispersion diagram and equations are originated to find out the dominant mode and zeroth-order frequency of realized metamaterial for both the feeding phenomena. Mathematical effective parameters (permittivity, permeability, impedance and refractive index) are extracted. Furthermore, a specimen of furnished metamaterial is manufactured to validate the mathematical and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi Fizicheskikh Nauk (UFN) J. 10(4), 509–514 (1968)

    Article  Google Scholar 

  2. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  3. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001)

    Article  Google Scholar 

  4. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  Google Scholar 

  5. Smith, D.R., Vier, D.C., Koschny, T., Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)

    Article  Google Scholar 

  6. Smith, D.R., Schultz, S., Markoš, P., Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65(19), 195104 (2002)

    Article  Google Scholar 

  7. Kim, H., Seo, C.: Inverse class-F power amplifier using the metamaterial structure on the harmonic control circuit. Microw. Opt. Technol. Lett. 50(11), 2881–2884 (2008)

    Article  Google Scholar 

  8. Thomas, Z.M., Grzegorczyk, T.M., Wu, B.-I., Kong, J.A.: Enhanced microstrip stopband filter using a metamaterial substrate. Microw. Opt. Technol. Lett. 48(8), 1522–1525 (2006)

    Article  Google Scholar 

  9. Lee, C., Leong, K.M., Itoh, T.: Metamaterial transmission line based bandstop and bandpass filter designs using broadband phase cancellation. In: 2006 IEEE MTT-S International Microwave Symposium Digest (2006). https://doi.org/10.1109/mwsym.2006.249870

  10. Tseng, C.-H., Chang, C.-L.: A broadband quadrature power splitter using metamaterial transmission line. IEEE Microw. Wirel. Compon. Lett. 18(1), 25–27 (2008)

    Article  MathSciNet  Google Scholar 

  11. Antoniades, M.A., Eleftheriades, G.V.: A broadband series power divider using zero-degree metamaterial phase-shifting lines. IEEE Microw. Wirel. Compon. Lett. 15(11), 808–810 (2005)

    Article  Google Scholar 

  12. Tseng, C.-H., Chang, C.-L.: Improvement of return loss bandwidth of balanced amplifier using metamaterial-based quadrature power splitters. IEEE Microw. Wirel. Compon. Lett. 18(4), 269–271 (2008)

    Article  MathSciNet  Google Scholar 

  13. Sarabandi, K., Song, Y.J.: Subwavelength radio repeater system utilizing miniaturized antennas and metamaterial channel isolator. IEEE Trans. Antenna Prop. 59(7), 2683–2690 (2011)

    Article  Google Scholar 

  14. Brito, D.B., d’ Assunção, A.G., Maniçoba, R.H.C., Begaud, X.: Metamaterial inspired fabry-pérot antenna with cascaded frequency selective surfaces. Microw. Opt. Technol. Lett. 55(5), 981–985 (2013)

    Article  Google Scholar 

  15. Khandelwal, M.K., Arora, A., Kumar, S., Kim, K.W., Choi, H.C.: Dual band double negative (DNG) metamaterial with small frequency ratio. J. Electromag. Wave Appl. 32(17), 2167–2781 (2018)

    Article  Google Scholar 

  16. Cheng, Y., Fan, J., Luo, H., Chen, F.: Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 8, 7615–7621 (2020)

    Article  Google Scholar 

  17. Li, W., Cheng, Y.: Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt. Commun. 462, 125265 (2020)

    Article  Google Scholar 

  18. Ma, Y., Zhang, H., Li, Y., Wang, Y.: Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure. J. Opt. Soc. Am. B 31(2), 325 (2014)

    Article  Google Scholar 

  19. Yang, D., Xia, Y.: Experimental verification of multi-band metamaterial absorber with double structured layers. Mat. Res. Expr. 7(3), 035801 (2020)

    Article  Google Scholar 

  20. Feng, S., Zhao, Y., Liao, Y.-L.: Dual-band dielectric metamaterial absorber and sensing applications. Res. Phys. 18, 103272 (2020)

    Google Scholar 

  21. Cheng, Y., Li, W., Mao, X.: Triple-band polarization angle independent 90° polarization rotator based on Fermat’s spiral structure planar chiral metamaterial. Prog. Electromagn. Res. 165, 35–45 (2019)

    Article  Google Scholar 

  22. Singh, D.K., Kanaujia, B.K., Dwari, S., et al.: Modeling of a dual circularly polarized capacitive-coupled slit-loaded truncated microstrip antenna. J. Comput. Electron. 19, 1564–1572 (2020). https://doi.org/10.1007/s10825-020-01527-0

    Article  Google Scholar 

  23. Khandelwal, M.K., Kumar, S., Kanaujia, B.K.: Design, modeling and analysis of dual-feed defected ground microstrip patch antenna with wide axial ratio bandwidth. J. Comput. Electron. 17, 1019–1028 (2018). https://doi.org/10.1007/s10825-018-1173-1

    Article  Google Scholar 

  24. Ramachandran, T., Faruque, M.R.I., Ahamed, E.: Composite circular split ring resonator (CSRR)-based left-handed metamaterial for C- and Ku-band application. Res. Phys. 14, 102435 (2019)

    Google Scholar 

  25. Almutairi, A.F., Islam, M.S., Samsuzzaman, M., Islam, M.T., Misran, N., Islam, M.T.: A complementary split ring resonator based metamaterial with effective medium ratio for C-band microwave applications. Res. Phys. 15, 102675 (2019)

    Google Scholar 

  26. Ramachandran, T., Faruque, M.R.I., Islam, M.T.: A dual band left-handed metamaterial-enabled design for satellite applications. Res. Phys. 16, 102942 (2020)

    Google Scholar 

  27. Tamim, A.M., Faruque, M.R.I., Alam, M.J., Islam, S.S., Islam, M.T.: Split ring resonator loaded horizontally inverse double L-shaped metamaterial for C-, X- and Ku-Band Microwave applications. Res. Phys. 12, 2112–2122 (2019)

    Google Scholar 

  28. Sim, M.S., You, K.Y., Esa, F., Dimon, M.N., Khamis, N.H.: Multiband metamaterial microwave absorbers using split ring and multiwidth slot structure. Int. J. RF Microw. Comput. Aided Eng. 28, e21473 (2018)

    Article  Google Scholar 

  29. Kaur, K.P., Upadhyaya, T., Palandoken, M., Gocen, C.: Ultrathin dual-layer tripleband flexible microwave metamaterial absorber for energy harvesting applications. Int. J. RF Microw. Comput. Aided Eng. 29, 21646 (2019)

    Article  Google Scholar 

  30. Wu, T., Ma, Y.-M., Chen, J., Wang, L.-L.: Triple-band polarization-insensitive metamaterial absorber with low profile. Int. J. RF Microw. Comput. Aided Eng. 30, e22314 (2020)

    Google Scholar 

  31. Constantine, A.: Balanis, Antenna Theory: Analysis and Design, 3rd edn., pp. 816–856. John Wiley, Hoboken (2005)

    Google Scholar 

  32. Caloz, C., Itoh, T.: Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line. In: Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 412–415 (2002). https://doi.org/10.1109/APS.2002.1016111

  33. Li, T., Zhai, H., Li, G., Li, L., Liang, C.: Compact UWB band-notched antenna design using interdigital capacitance loading loop resonator. IEEE Antenna Wirel. Prop. Lett. 11, 724–727 (2012)

    Article  Google Scholar 

  34. Peng, Y., Wen-Xun, Z.: Compact sub-wavelength microstrip band-reject filter based on inter-digital capacitance loaded loop resonators. Microw. Opt. Technol. Lett. 52(1), 166–169 (2010). https://doi.org/10.1002/mop.24885

    Article  Google Scholar 

  35. Arslanagic, S., Hansen, T.V., Mortensen, N.A., Gregersen, A.H., Sigmund, O., Ziolkowski, R.W., et al.: A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antenna Prop. Mag. 55(2), 91–106 (2013)

    Article  Google Scholar 

  36. Numan, A.B., Sharawi, M.S.: Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antenna Prop. Mag. 55(5), 202–211 (2013)

    Article  Google Scholar 

  37. Caloz, C., Itoh, T.: Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line.” In: IEEE Antennas and Propagation Society International Symposium (IEEE Cat No02CH37313)

  38. Caloz, C., Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. John Wiley & Sons, Hoboken (2005)

    Book  Google Scholar 

  39. Nuthakki, V.R., Dhamodharan, S.: Via-less CRLH-TL unit cells loaded compact and bandwidth-enhanced metamaterial based antennas. AEU Int. J. Electron. Commun. 80, 48–58 (2017)

    Article  Google Scholar 

  40. Sharma, S.K., Chaudhary, R.K.: A compact zeroth-order resonating wideband antenna with dual-band characteristics. IEEE Antenna Wirel. Prop. Lett. 14, 1670–1672 (2015)

    Article  Google Scholar 

  41. Chi, P.-L., Shih, Y.-S.: Compact and bandwidth-enhanced zeroth-order resonant antenna. IEEE Antenna Wirel. Prop. Lett. 14, 285–288 (2015)

    Article  Google Scholar 

  42. Bahl, J.: Lumped Elements for RF and Microwave Circuits. Artech House, Norwood (2003)

    Google Scholar 

Download references

Funding

Authors have no known competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

PC took part in conceptualization, data curation, methodology, software, writing–original draft preparation, validation, formal analysis. BKK participated in visualization, investigation, resources, supervision. SD involved in supervision, formal analysis, investigation, writing–reviewing and editing. MKK participated in software, validation, writing–reviewing and editing.

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, P., Kanaujia, B.K., Dwari, S. et al. Theoretical circuit modeling of tetra bands DNG metamaterial by transmission line theory with very small frequency. J Comput Electron 20, 1439–1451 (2021). https://doi.org/10.1007/s10825-021-01708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01708-5

Keywords

Navigation