Skip to main content
Log in

Efficient two-level parallelization approach to evaluate spin relaxation in a strained thin silicon film

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The evaluation of the spin lifetime in an ultra-thin silicon film is a massive computational challenge because of the necessity of performing appropriate double integration of the strongly scattering momentum-dependent spin relaxation rates. We have tackled the problem by dividing the whole computation range into two levels. Our scheme in each level is based on a hybrid parallelization approach, using the message passing interface MPI and OpenMP. In the first level, the algorithm precalculates the subband wave functions corresponding to fixed energies and archives the results in a file-based cache to reduce memory consumption. In the second level, we compute the spin relaxation time by using the archived data in parallel. This two-level computation approach shows an excellent parallel speedup, and most efficient ways to maximally utilize the computational resources are described. Finally, how an application of shear strain can dramatically increase the spin lifetime is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)

    Article  Google Scholar 

  2. Jansen, R.: Silicon spintronics. Nat. Mat. 11, 400–408 (2012)

    Article  Google Scholar 

  3. Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)

    Article  Google Scholar 

  4. MPI 1.1 Standard, http://www-unix.mcs.anl.gov/mpi/mpich. Accessed 2015

  5. L. Dagum, R. Menon, OpenMP: An industry standard API for shared-memory programming. In: Proc. in IEEE Computational Science and Engineering, pp. 46–55 (1998)

  6. Jost, G., Jin, H., an Mey, D. Hatay F. F.: Comparing the OpenMP, MPI, and hybrid programming paradigms on an SMP cluster. NAS Technical Report NAS-03-019, pp. 1–10 (2003)

  7. Tang, S., Lee,B. -S., He B.: Speedup for multi-level parallel computing. In: Proc. in International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum, pp. 537–546 (2012)

  8. Fabian, J., Matos-Abiaguea, A., Ertlera, Ch., Stano, P., Zutic, I.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  9. Zutic, I., Fabian, J., Das Sarma, S.: Semiconductor spintronics. Acta Phys. Slovaca 57, 567–907 (2007)

    Google Scholar 

  10. Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)

    Article  Google Scholar 

  11. Sverdlov, V., Selberherr, S.: Silicon spintronics: progress and challenges. Phys. Reports 585, 1–40 (2015)

    Article  MathSciNet  Google Scholar 

  12. Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)

    Article  Google Scholar 

  13. Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Variation of spin lifetime with spin injection orientation in strained thin silicon films. ECS Trans. 66(5), 233–240 (2015)

    Article  Google Scholar 

  14. Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Enhancement of electron spin relaxation time in thin SOI films by spin injection orientation and uniaxial stress. J. Nano Res. 39, 34–42 (2016)

    Article  Google Scholar 

  15. Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84, 115–117 (2004)

    Article  Google Scholar 

  16. Osintsev, D.: Modeling Spintronic Effects in Silicon (Dissertation). Institute for Microelectronics, TU Wien (2014)

    Google Scholar 

  17. Ghosh, J.: Modeling Spin-Dependent Transport in Silicon (Dissertation). Institute for Microelectronics, TU Wien (2016)

    Google Scholar 

  18. Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr S.: Dependence of spin lifetime on spin injection orientation in strained silicon films. In: Proc. in Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon, pp. 285–288 (2015)

  19. Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band \(\mathbf{k \cdot p}\) calculation of the hole mobility in silicon inversion layers: dependence on surface orientation. strain, and silicon thickness. J. Appl. Phys. 94, 1079–1095 (2003)

    Article  Google Scholar 

  20. Ghosh J., Osintsev D., Sverdlov V., Weinbub J., Selberherr S. Evaluation of spin lifetime in thin-body FETs: a high performance computing approach. In: Lirkov I., Margenov S., Waśniewski J. (eds.) Large-Scale Scientific Computing. LSSC 2015. Lecture Notes in Computer Science, vol. 9374. Springer, Cham (2015)

  21. Sverdlov, V.: Strain-induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)

    Book  Google Scholar 

  22. Nonlinear Optimization, https://nlopt.readthedocs.io/en/latest/. Accessed 2015

  23. Boost Serialization Library, www.boost.org/libs/serialization/. Accessed 2015

  24. Vienna Scientific Cluster, http://www.vsc.ac.at/systems/vsc-2/. Accessed 2015

  25. Boost Chrono Library, www.boost.org/libs/chrono/. Accessed 2015

  26. Ghosh, J., Osintsev, D., Sverdlov, V., Selberherr, S.: Intersubband spin relaxation reduction and spin lifetime enhancement by strain in SOI structures. Microelectron. Eng. 147, 89–91 (2015)

    Article  Google Scholar 

  27. Ghosh, J., Sverdlov, V., Selberherr S.: Influence of valley splitting on spin relaxation time in a strained thin silicon film. In: Proc. in International Workshop on Computational Electronics, pp. 1–4 (2015)

Download references

Acknowledgements

The computational results presented have been partly achieved using the Vienna Scientific Cluster (VSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, J., Osintsev, D. & Sverdlov, V. Efficient two-level parallelization approach to evaluate spin relaxation in a strained thin silicon film. J Comput Electron 18, 28–36 (2019). https://doi.org/10.1007/s10825-018-1274-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1274-x

Keywords

Navigation