Skip to main content
Log in

Topology optimization and Monte Carlo multithreading simulation for fault-tolerant nanoarrays

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Nanocomputation based on emerging devices is becoming a major subject of study as a possible alternative to CMOS. These new technologies are highly defective due to the immaturity of the processes. It is extremely important then for both the technologists and the application engineers to have feedbacks on the impact on the circuit of such defectivity. The current scenario, though, evidences a complete lack of algorithms and tools for analyzing these kinds of circuits fault tolerance as well as for designing defect-tolerant circuits. This paper presents an unprecedented CAD ensemble. I) FaTToR, an algorithm for optimizing nanoarray-based circuits tolerance to defects. II) ToPoliNano based on a multithreading Monte Carlo switch-level simulation engine, a CAD for thoroughly analyzing the circuit defect tolerance against defect distributions derived by fabrication processes. Results are demonstrated in terms of output error rate and yield for nanoarray-based circuits of medium complexity. Several defect distributions are used as inputs for both FaTToR optimization and ToPoliNano validation. Our contributions represent a fundamental step forward both in terms of design automation methodology and in terms of specific feedbacks on the technology here studied. The approach is general and can be adopted to several other emerging technologies based on regular fabrics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Angiolini, F., Jamaa, M., Atienza, D., Benini, L., De Micheli, G.: Improving the fault tolerance of nanometric pla designs. In: Design, Automation Test in Europe Conference Exh., pp. 1–6 (2007)

  2. Antidormi, A., Frache, S., Graziano, M., Gaillardon, P.E., Piccinini, G., Micheli, G.D.: Computationally efficient multiple-independent-gate device model. IEEE Trans. Nanotechnol. 15(1), 2–14 (2016). https://doi.org/10.1109/TNANO.2015.2493543

    Article  Google Scholar 

  3. Casu, M., Graziano, M., Masera, G., Piccinini, G., Zamboni, M.: An electromigration and thermal model of power wires for a priori high-level reliability prediction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(4), 349–358 (2004)

    Article  Google Scholar 

  4. Dehon, A.: Array-based architecture for fet-based, nanoscale electronics. IEEE Trans. Nanotech. 2(1), 23–32 (2003)

    Article  MathSciNet  Google Scholar 

  5. Dezan, C., Teodorov, C., Lagadec, L., Leuchtenburg, M., Wang, T., Narayanan, P., Moritz, A.: Towards a framework for designing applications onto hybrid nano/cmos fabrics. Microelectron. J. 40(45), 656–664 (2009). European Nano Systems (ENS 2007) Int. Conf. on Superlattices, Nanost. and Nanodev

    Article  Google Scholar 

  6. Frache, S., Chiabrando, D., Graziano, M., Enrico, E., Boarino, L., Zamboni, M.: Silicon nanoarray circuits design, modeling, simulation and fabrication. In: IEEE Conference on Nanotechnology, pp. 1–5 (2012)

  7. Frache, S., Chiabrando, D., Graziano, M., Vacca, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parellel Distr. Comput. 74(6), 2530–2541 (2013)

    Article  Google Scholar 

  8. Gaillardon, P., Ghasemzadeh, H., Micheli, G.D.: Vertically-stacked silicon nanowire transistors with controllable polarity: a robustness study. In: 2013 14th Latin American Test Workshop - LATW, pp. 1–6 (2013). https://doi.org/10.1109/LATW.2013.6562673

  9. Gaillardon, P.E., Ben-Jamaa, M.H., Clermidy, F., O Connor, I.: Evaluation of a crossbar multiplexer in a lithography-based nanowire technology. In: IEEE International Symposium Circuits and Systems pp. 2930–2933 (2011)

  10. Graziano, M., Frache, S., Zamboni, M.: A hardware viewpoint on biosequence analysis: What’s next? ACM J. Emerg. Technol. Comput. Sys. 9(4), 29 (2013)

    Google Scholar 

  11. Heath, J.R., Kuekes, P.J., Snider, G.S., Williams, R.S.: A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370), 1716–1721 (1998)

    Article  Google Scholar 

  12. Khan, M.M.U., Narayanan, P., Joshi, P., Panchapakeshan, P., Moritz, C.A.: Fasttrack: Toward nanoscale fault masking with high performance. Proc. IEEE 11(4), 720–730 (2012)

    Google Scholar 

  13. Law, M., Goldberger, J., Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34(1), 83–122 (2004)

    Article  Google Scholar 

  14. Leuchtenburg, M., Narayanan, P., Wang, T., Moritz, C.: Impact of process variation on nasic nanoprocessors with 2-way redundancy. In: IEEE Conference on Nanotechnology. IEEE-NANO., pp. 737–739 (2009)

  15. Narayanan, P., Panchapakeshan, P., Kina, J., Chui, C.O., Moritz, C.: Integrated nanosystems with junctionless crossed nanowire transistors. In: IEEE Conference on Nanotechnology, pp. 845–848 (2011)

  16. Ottavi, M., Hashempour, H., Vankamamidi, V., Karim, F., Walus, K., Ivanov, A.: On the error effects of random clock shifts in quantum-dot cellular automata circuits. In: IEEE International Symposium on Defect and Fault-Tolerance in VLSI System, pp. 487–498 (2007)

  17. Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.: Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)

    Article  Google Scholar 

  18. Rahman, M., Shi, J., Li, M., Khasanvis, S., Moritz, C.A.: Manufacturing pathway and experimental demonstration for nanoscale fine-grained 3-d integrated circuit fabric. In: 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), pp. 1214–1217 (2015). https://doi.org/10.1109/NANO.2015.7388847

  19. Ranone, P., Turvani, G., Riente, F., Graziano, M., Roch, M., Zamboni, M.: Fault tolerant nanoarray circuits: automatic design and verification. In: VLSI Test Symposium (VTS), pp. 1–6 (2014)

  20. Rao, W., Orailoglu, A., Karri, R.: Fault tolerant approaches to nanoelectronic programmable logic arrays. In: DSN ’07 Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 216–224 (2007)

  21. Riente, F., Turvani, G., Vacca, M., Roch, M.R., Zamboni, M., Graziano, M.: Topolinano: a cad tool for nano magnetic logic. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(7), 1061–1074 (2017)

    Article  Google Scholar 

  22. Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: SIS: A System for Sequential Circuit Synthesis. EECS Department, University of California, Tech. rep., Berkeley (1992)

    Google Scholar 

  23. Strukov, D.B., Stewart, D.R., Borghetti, J., Li, X., Pickett, M., Ribeiro, G.M., Robinett, W., Snider, G., Strachan, J.P., Wu, W., Xia, Q., Yang, J.J., Williams, R.S.: Hybrid cmos/memristor circuits. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1967–1970 (2010)

  24. Teodorov, C., Narayanan, P., Lagadec, L., Dezan, C.: Regular 2d nasic-based architecture and design space exploration. In: International Symposium on Nanoscale Architecture, pp. 70–77 (2011)

  25. Turvani, G., Riente, F., Cairo, F., Vacca, M., Garlando, U., Zamboni, M., Graziano, M.: Efficient and reliable fault analysis methodology for nanomagnetic circuits. Int. J. Circuit Theory Appl. 45(5), 660–680 (2017). https://doi.org/10.1002/cta.2252

    Article  Google Scholar 

  26. Vacca, M., Frache, S., Graziano, M., Riente, F., Turvani, G., Roch, M., Zamboni, M.: Topolinano: Nanomagnet logic circuits design and simulation. In: Anderson, N.G., Bhanja, S. (eds.) Field-Coupled Nanocomputing. Lecture Notes in Computer Science, pp. 274–306. Springer, Berlin (2014)

    Google Scholar 

  27. Xiao, D., Wang, X., Chen, J., Huang, X., Luo, J., Wu, Q.: Device simulation on gate-all-around cylindrical transistor. In: 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM), vol. 2, pp. 160–163 (2010)

  28. Zhang, J., Rahman, M., Narayanan, P., Khasanvis, S., Moritz, C.A.: Parameter variation sensing and estimation in nanoscale fabrics. J. Parallel. Distrib. Comput. 74(6), 2504–2511 (2014). Computing with Future Nanotechnology

    Article  Google Scholar 

  29. Zobrist, G.: VLSI Fault Modeling and Testing Techniques. Computer Engineering and Computer Science Series. Ablex Publishing Corporation, New York City (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Graziano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riente, F., Turvani, G., Ranone, P. et al. Topology optimization and Monte Carlo multithreading simulation for fault-tolerant nanoarrays. J Comput Electron 17, 1356–1369 (2018). https://doi.org/10.1007/s10825-018-1208-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1208-7

Keywords

Navigation