Skip to main content
Log in

Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1)

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Natural Resistance-Associated Macrophage Proteins are a family of transmembrane divalent metal ion transporters, with important implications in life of both bacteria and mammals. Among them, the Solute Carrier family 11 member A1 (SLC11A1) has been implicated with susceptibility to infection by Mycobacterium avium subspecies paratuberculosis (MAP), potentially causing Crohn’s disease in humans and paratuberculosis (PTB) in ruminants. Our previous research had focused on sequencing the mRNA of the caprine slc11a1 gene and pinpointed polymorphisms that contribute to caprine SLC11A1’s susceptibility to infection by MAP in PTB. Despite its importance, little is known on the structural/dynamic features of mammalian SLC11A1 that may influence its function under normal or pathological conditions at the protein level. In this work we studied the structural architecture of SLC11A1 in Capra hircus and Bos taurus through molecular modeling, molecular dynamics simulations in different, functionally relevant configurations, free energy calculations of protein-metal interactions and sequence conservation analysis. The results of this study propose a three dimensional structure for SLC11A1 with conserved sequence and structural features and provide hints for a potential mechanism through which divalent metal ion transport is conducted. Given the importance of SLC11A1 in susceptibility to PTB, this study provides a framework for further studies on the structure and dynamics of SLC11A1 in other organisms, to gain 3D structural insight into the macromolecular arrangements of SLC11A1 but also suggesting a potential mechanism which divalent metal ion transport is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Slc11a1 :

Solute carrier family 11 member 1 gene

SLC11A1:

Solute carrier family 11 member A1

NRAMPs:

Natural resistance-associated macrophage proteins

DMT1:

Divalent metal ion transporer 1

MAP:

Mycobacterium avium subspecies paratuberculosis

ScaDMT:

Staphylococcus capitis divalent metal ion transporter

EcoDMT:

Eremococcus coleocola divalent metal ion transporter

DraNramp:

Deinococcus radiodurans NRAMP homolog

TM:

Transmembrane

MD:

Molecular dynamics

FEP:

Free energy perturbation

EDA:

Essential dynamics analysis

References

  1. Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3(1):22–32. https://doi.org/10.1038/nrg701

    Article  CAS  PubMed  Google Scholar 

  2. Sechi LA, Dow CT (2015) Mycobacterium avium ss. paratuberculosis zoonosis—the hundred year war - Beyond Crohn’s Disease. Front Immunol 6:96. https://doi.org/10.3389/fimmu.2015.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shariat N, Dudley EG (2008) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80(2):430–439. https://doi.org/10.1128/AEM.02790-13

    Article  CAS  Google Scholar 

  4. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11(5):343–354. https://doi.org/10.1038/nri2960

    Article  CAS  PubMed  Google Scholar 

  5. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338(10):640–644. https://doi.org/10.1056/NEJM199803053381002

    Article  CAS  PubMed  Google Scholar 

  6. Paccagnini D, Sieswerda L, Rosu V, Masala S, Pacifico A, Gazouli M, Ikonomopoulos J, Ahmed N, Zanetti S, Sechi LA (2009) Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus. PLoS ONE 4(9):e7109. https://doi.org/10.1371/journal.pone.0007109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruiz-Larrañaga O (2009) Identification of single nucleotide polymorphisms in the bovine solute carrier family 11 member 1 (SLC11A1) gene and their association with infection by Mycobacterium avium subspecies paratuberculosis. J Dairy Sci 93:1713–1721

    Article  Google Scholar 

  8. Sophie M, Hameed A, Muneer A, Samdani AJ, Saleem S, Azhar A (2017) SLC11A1 polymorphisms and host susceptibility to cutaneous leishmaniasis in Pakistan. Parasit Vectors 10(1):12. https://doi.org/10.1186/s13071-016-1934-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stewart LC, Day AS, Pearson J, Barclay ML, Gearry RB, Roberts RL, Bentley RW (2010) SLC11A1 polymorphisms in inflammatory bowel disease and Mycobacterium avium subspecies paratuberculosis status. World J Gastroenterol 16(45):5727–5731

    Article  CAS  Google Scholar 

  10. Korou LM, Liandris E, Gazouli M, Ikonomopoulos J (2010) Investigation of the association of the SLC11A1 gene with resistance/sensitivity of goats (Capra hircus) to paratuberculosis. Vet Microbiol 144(3–4):353–358. https://doi.org/10.1016/j.vetmic.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  11. Taka S, Gazouli M, Sotirakoglou K, Liandris E, Andreadou M, Triantaphyllopoulos K, Ikonomopoulos J (2015) Functional analysis of 3′UTR polymorphisms in the caprine SLC11A1 gene and its association with the Mycobacterium avium subsp. paratuberculosis infection. Vet Immunol Immunopathol 167(1–2):75–79. https://doi.org/10.1016/j.vetimm.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  12. Taka S, Liandris E, Gazouli M, Sotirakoglou K, Theodoropoulos G, Bountouri M, Andreadou M, Ikonomopoulos J (2013) In vitro expression of the SLC11A1 gene in goat monocyte-derived macrophages challenged with Mycobacterium avium subsp paratuberculosis. Infect Genet Evol 17:8–15. https://doi.org/10.1016/j.meegid.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  13. Vacca GM, Pazzola M, Pisano C, Carcangiu V, Diaz ML, Nieddu M, Robledo R, Mezzanotte R, Dettori ML (2011) Chromosomal localisation and genetic variation of the SLC11A1 gene in goats (Capra hircus). Vet J 190(1):60–65. https://doi.org/10.1016/j.tvjl.2010.09.028

    Article  CAS  PubMed  Google Scholar 

  14. Forbes JR, Gros P (2003) Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102(5):1884–1892. https://doi.org/10.1182/blood-2003-02-0425

    Article  CAS  PubMed  Google Scholar 

  15. Cellier M, Govoni G, Vidal S, Kwan T, Groulx N, Liu J, Sanchez F, Skamene E, Schurr E, Gros P (1994) Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 180(5):1741–1752

    Article  CAS  Google Scholar 

  16. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9(8):397–403

    Article  CAS  Google Scholar 

  17. Vidal SM, Pinner E, Lepage P, Gauthier S, Gros P (1996) Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J Immunol 157(8):3559–3568

    CAS  PubMed  Google Scholar 

  18. Cellier MF (2012) Nramp: from sequence to structure and mechanism of divalent metal import. Curr Top Membr 69:249–293. https://doi.org/10.1016/B978-0-12-394390-3.00010-0

    Article  CAS  PubMed  Google Scholar 

  19. Techau ME, Valdez-Taubas J, Popoff JF, Francis R, Seaman M, Blackwell JM (2007) Evolution of differences in transport function in Slc11a family members. J Biol Chem 282(49):35646–35656. https://doi.org/10.1074/jbc.M707057200

    Article  CAS  PubMed  Google Scholar 

  20. Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T, Silke J, Kumar S, Tan SS (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci USA 106(36):15489–15494. https://doi.org/10.1073/pnas.0904880106

    Article  PubMed  Google Scholar 

  21. Soe-Lin S, Apte SS, Mikhael MR, Kayembe LK, Nie G, Ponka P (2010) Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol 38(8):609–617. https://doi.org/10.1016/j.exphem.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  22. Roupie V, Rosseels V, Piersoel V, Zinniel DK, Barletta RG, Huygen K (2008) Genetic resistance of mice to Mycobacterium paratuberculosis is influenced by Slc11a1 at the early but not at the late stage of infection. Infection immunity 76(5):2099–2105. https://doi.org/10.1128/IAI.01137-07

    Article  CAS  PubMed  Google Scholar 

  23. Stienstra Y, van der Werf TS, Oosterom E, Nolte IM, van der Graaf WT, Etuaful S, Raghunathan PL, Whitney EA, Ampadu EO, Asamoa K, Klutse EY, te Meerman GJ, Tappero JW, Ashford DA, van der Steege G (2006) Susceptibility to Buruli ulcer is associated with the SLC11A1 (NRAMP1) D543N polymorphism. Genes Immun 7(3):185–189. https://doi.org/10.1038/sj.gene.6364281

    Article  CAS  PubMed  Google Scholar 

  24. White JK, Stewart A, Popoff JF, Wilson S, Blackwell JM (2004) Incomplete glycosylation and defective intracellular targeting of mutant solute carrier family 11 member 1 (Slc11a1). Biochem J 382(Pt 3):811–819. https://doi.org/10.1042/BJ20040808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wessling-Resnick M (2015) Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290(31):18984–18990. https://doi.org/10.1074/jbc.R115.643973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bozzi AT, Bane LB, Weihofen WA, Singharoy A, Guillen ER, Ploegh HL, Schulten K, Gaudet R (2016) Crystal structure and conformational change mechanism of a bacterial Nramp-family divalent metal transporter. Structure 24(12):2102–2114. https://doi.org/10.1016/j.str.2016.09.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, Dutzler R (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 21(11):990–996. https://doi.org/10.1038/nsmb.2904

    Article  CAS  PubMed  Google Scholar 

  28. Ehrnstorfer IA, Manatschal C, Arnold FM, Laederach J, Dutzler R (2017) Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family. Nat Commun 8:14033. https://doi.org/10.1038/ncomms14033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. UniProt_Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  30. Montalbetti N, Simonin A, Kovacs G, Hediger MA (2013) Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med 34(2–3):270–287. https://doi.org/10.1016/j.mam.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  31. Martinez R, Dunner S, Barrera G, Canon J (2008) Novel variants within the coding regions of the Slc11A1 gene identified in Bos taurus and Bos indicus breeds. J Anim Breed Genet 125(1):57–62. https://doi.org/10.1111/j.1439-0388.2007.00690.x

    Article  CAS  PubMed  Google Scholar 

  32. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  33. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  34. Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  35. Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 35(Web Server issue):W429–W432. https://doi.org/10.1093/nar/gkm256

    Article  Google Scholar 

  36. Viklund H, Elofsson A (2008) OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15):1662–1668. https://doi.org/10.1093/bioinformatics/btn221

    Article  CAS  PubMed  Google Scholar 

  37. Jones DT (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23(5):538–544. https://doi.org/10.1093/bioinformatics/btl677

    Article  CAS  PubMed  Google Scholar 

  38. Tsaousis GN, Bagos PG, Hamodrakas SJ (2014) HMMpTM: improving transmembrane protein topology prediction using phosphorylation and glycosylation site prediction. Biochim Biophy Acta 1844(2):316–322. https://doi.org/10.1016/j.bbapap.2013.11.001

    Article  CAS  Google Scholar 

  39. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  40. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2002:310–322

    Google Scholar 

  41. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365. https://doi.org/10.1093/nar/gkl124

    Article  CAS  Google Scholar 

  42. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED protein analysis workbench. Nucleic Acids Res 41(Web Server issue):W349–W357. https://doi.org/10.1093/nar/gkt381

    Article  Google Scholar 

  43. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  44. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195. https://doi.org/10.1371/journal.pcbi.1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Omasits U, Ahrens CH, Muller S, Wollscheid B (2014) Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6):884–886. https://doi.org/10.1093/bioinformatics/btt607

    Article  CAS  PubMed  Google Scholar 

  46. Floden EW, Tommaso PD, Chatzou M, Magis C, Notredame C, Chang JM (2016) PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res 44(W1):W339–W343. https://doi.org/10.1093/nar/gkw300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116. https://doi.org/10.1007/978-1-62703-646-7_6

    Article  CAS  PubMed  Google Scholar 

  48. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  49. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469. https://doi.org/10.1093/nar/gkn180

    Article  CAS  Google Scholar 

  51. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  CAS  Google Scholar 

  52. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  53. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54. https://doi.org/10.1007/978-1-4939-7231-9_4

    Article  CAS  PubMed  Google Scholar 

  54. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  55. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins 12(4):345–364. https://doi.org/10.1002/prot.340120407

    Article  CAS  PubMed  Google Scholar 

  56. Studer G, Biasini M, Schwede T (2014) Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). Bioinformatics 30(17):i505–i511. https://doi.org/10.1093/bioinformatics/btu457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bond CS (2003) TopDraw: a sketchpad for protein structure topology cartoons. Bioinformatics 19(2):311–312

    Article  CAS  Google Scholar 

  58. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14(1):33–38, 27–38

    Article  CAS  Google Scholar 

  59. Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.7

  60. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  61. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  62. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004. https://doi.org/10.1002/jcc.23702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Best RB, Zhu X, Shim J, Lopes PE, Mittal J, Feig M, Mackerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 8(9):3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmuller H, MacKerell AD Jr (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14(1):71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  65. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li P, Roberts BP, Chakravorty DK, Merz KM Jr (2013) Rational design of particle mesh Ewald compatible Lennard-Jones parameters for + 2 metal cations in explicit solvent. J Chem Theory Comput 9(6):2733–2748. https://doi.org/10.1021/ct400146w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li P, Song LF, Merz KM Jr (2015) Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water. J Phys Chem B 119(3):883–895. https://doi.org/10.1021/jp505875v

    Article  CAS  PubMed  Google Scholar 

  68. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  69. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  70. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190. https://doi.org/10.1063/1.328693 doi

    Article  CAS  Google Scholar 

  71. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17(4):412–425. https://doi.org/10.1002/prot.340170408

    Article  CAS  PubMed  Google Scholar 

  72. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29 (5):397–411. https://doi.org/10.1007/s10822-015-9840-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Knight JL, Brooks CL (2009) Lambda-dynamics free energy simulation methods. J Comput Chem 30(11):1692–1700. https://doi.org/10.1002/jcc.21295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pohorille A, Jarzynski C, Chipot C (2010) Good practices in free-energy calculations. J Phys Chem B 114(32):10235–10253. https://doi.org/10.1021/jp102971x

    Article  CAS  PubMed  Google Scholar 

  75. Caplan DA, Subbotina JO, Noskov SY (2008) Molecular mechanism of ion-ion and ion-substrate coupling in the Na+-dependent leucine transporter LeuT. Biophys J 95(10):4613–4621. https://doi.org/10.1529/biophysj.108.139741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069. https://doi.org/10.1016/S0006-3495(97)78756-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44(W1):W344–W350. https://doi.org/10.1093/nar/gkw408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu Y, Gierasch LM, Bahar I (2010) Role of Hsp70 ATPase domain intrinsic dynamics and sequence evolution in enabling its functional interactions with NEFs. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000931

    Article  PubMed  PubMed Central  Google Scholar 

  79. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  Google Scholar 

  80. Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I (2014) Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30(18):2681–2683. https://doi.org/10.1093/bioinformatics/btu336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    CAS  PubMed  Google Scholar 

  83. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    Article  CAS  Google Scholar 

  84. Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F (2015) Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 15(14):2525–2546. https://doi.org/10.1002/pmic.201400633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu YZ, Thuraisingam T, Kanagaratham C, Tao S, Radzioch D (2018) c-Src kinase is involved in the tyrosine phosphorylation and activity of SLC11A1 in differentiating macrophages. PLoS ONE 13(5):e0196230. https://doi.org/10.1371/journal.pone.0196230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moharir A, Peck SH, Budden T, Lee SY (2013) The role of N-glycosylation in folding, trafficking, and functionality of lysosomal protein CLN5. PLoS ONE 8(9):e74299. https://doi.org/10.1371/journal.pone.0074299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krishnamurthy H, Gouaux E (2012) X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481:469. https://doi.org/10.1038/nature10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kazmier K, Sharma S, Quick M, Islam SM, Roux B, Weinstein H, Javitch JA, McHaourab HS (2014) Conformational dynamics of ligand-dependent alternating access in LeuT. Nat Struct Mol Biol 21(5):472–479. https://doi.org/10.1038/nsmb.2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bozzi AT, Bane LB, Weihofen WA, McCabe AL, Singharoy A, Chipot CJ, Schulten K, Gaudet R (2016) Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters. Proc Natl Acad Sci USA 113(37):10310–10315. https://doi.org/10.1073/pnas.1607734113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the authors from both the Agricultural University of Athens and the National and Kapodistrian University of Athens for the conception, enthusiasm and continuous support of the work. We would also like to thank the anonymous reviewers for their comments and the associate editor for their proper handling of the manuscript. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility—ARIS under project IDs “PR002041-S.C.S.M.P.” and “PR004006-BioMemPro-MD”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas A. Triantaphyllopoulos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8960 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triantaphyllopoulos, K.A., Baltoumas, F.A. & Hamodrakas, S.J. Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1). J Comput Aided Mol Des 33, 265–285 (2019). https://doi.org/10.1007/s10822-018-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0179-x

Keywords

Navigation