Skip to main content
Log in

Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1′ pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. dos Santos JI, Cardoso FF, Soares AM, dal Pai Silva M, Gallacci M, Fontes MRM (2011) Structural and functional studies of a bothropic myotoxin complexed to rosmarinic acid: new insights into Lys49-PLA(2) inhibition. PLoS ONE 6(12):e28521

    Article  CAS  Google Scholar 

  2. Patiño AC, Pereañez JA, Núñez V, Benjumea DM, Fernandez M, Rucavado A, Sanz L, Calvete JJ (2010) Isolation and biological characterization of Batx-I, a weak hemorrhagic and fibrinogenolytic PI metalloproteinase from Colombian Bothrops atrox venom. Toxicon 56(6):936–943

    Article  CAS  Google Scholar 

  3. Gutierrez JM, Rucavado A (2000) Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82(9–10):841–850

    Article  CAS  Google Scholar 

  4. Srinivasa V, Sundaram MS, Anusha S, Hemshekhar M, Chandra Nayaka S, Kemparaju K, Basappa Girish KS, Rangappa KS (2014) Novel apigenin based small molecule that targets snake venom metalloproteases. PLoS ONE 9(9):e106364

    Article  CAS  Google Scholar 

  5. Asega AF, Oliveira AK, Menezes MC, Neves-Ferreira AGC, Serrano SMT (2014) Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors. Toxicon 80:1–8

    Article  CAS  Google Scholar 

  6. Hernandez R, Cabalceta C, Saravia-Otten P, Chaves A, Gutierrez JM, Rucavado A (2011) Poor regenerative outcome after skeletal muscle necrosis induced by Bothrops asper venom: alterations in microvasculature and nerves. PLoS ONE 6(5):e19834

    Article  CAS  Google Scholar 

  7. Santhosh MS, Hemshekhar M, Sunitha K, Thushara RM, Jnaneshwari S, Kemparaju K, Girish KS (2013) Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini Rev Med Chem 13(1):106–123

    Article  CAS  Google Scholar 

  8. Ferreira RN, Rates B, Richardson M, Guimaraes BG, Sanchez EOF, Pimenta AMdC, Nagem RAP (2009) Complete amino-acid sequence, crystallization and preliminary X-ray diffraction studies of leucurolysin-a, a nonhaemorrhagic metalloproteinase from Bothrops leucurus snake venom. Acta Crystallogr Sect F 65(8):798–801

    Article  CAS  Google Scholar 

  9. Lingott T, Schleberger C, Gutiérrez JM, Merfort I (2009) High-resolution crystal structure of the snake venom metalloproteinase BaP1 complexed with a peptidomimetic: insight into inhibitor binding. Biochemistry 48(26):6166–6174

    Article  CAS  Google Scholar 

  10. Sanchez EF, Gabriel LM, Gontijo S, Gremski LH, Veiga SS, Evangelista KS, Eble JA, Richardson M (2007) Structural and functional characterization of a P-III metalloproteinase, leucurolysin-B, from Bothrops leucurus venom. Arch Biochem Biophys 468(2):193–204

    Article  CAS  Google Scholar 

  11. Gutiérrez JM, Escalante T, Rucavado A (2009) Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon 54(7):976–987

    Article  CAS  Google Scholar 

  12. Balaban NP, Rudakova NL, Sharipova MR (2012) Structural and functional characteristics and properties of metzincins. Biochemistry (Moscow) 77(2):119–127

    Article  CAS  Google Scholar 

  13. Takeda S, Takeya H (1824) Iwanaga S (2012) Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochim Biophys Acta 1:164–176

    Google Scholar 

  14. Markland FS Jr, Swenson S (2013) Snake venom metalloproteinases. Toxicon 62:3–18

    Article  CAS  Google Scholar 

  15. Gomis-Ruth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol 24(2):157–202

    Article  CAS  Google Scholar 

  16. Watanabe L, Shannon JD, Valente RH, Rucavado A, Alape-Girón A, Kamiguti AS, Theakston RDG, Fox JW, Gutiérrez JM, Arni RK (2003) Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. Protein Sci 12(10):2273–2281

    Article  CAS  Google Scholar 

  17. Escalante T, Franceschi A, Rucavado A, Gutierrez JM (2000) Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochem Pharmacol 60(2):269–274

    Article  CAS  Google Scholar 

  18. Wallnoefer HG, Lingott T, Gutiérrez JM, Merfort I, Liedl KR (2010) Backbone flexibility controls the activity and specificity of a protein–protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 132(30):10330–10337

    Article  CAS  Google Scholar 

  19. Bello CA, Hermogenes ALN, Magalhaes A, Veiga SS, Gremski LH, Richardson M, Sanchez EF (2006) Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie 88(2):189–200

    Article  CAS  Google Scholar 

  20. Dagda RK, Gasanov SE, Zhang B, Welch W, Rael ED (2014) Molecular models of the Mojave rattlesnake (Crotalus scutulatus scutulatus) venom metalloproteinases reveal a structural basis for differences in hemorrhagic activities. J Biol Phys 40:193–216

    Article  CAS  Google Scholar 

  21. Núñez V, Cid P, Sanz L, De La Torre P, Angulo Y, Lomonte B, Gutiérrez JM, Calvete JJ (2009) Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J Proteomics 73(1):57–78

    Article  CAS  Google Scholar 

  22. Sanchez EF, Schneider FS, Yarleque A, Borges MH, Richardson M, Figueiredo SG, Evangelista KS, Eble JA (2010) The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets. Arch Biochem Biophys 496(1):9–20

    Article  CAS  Google Scholar 

  23. Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. Database. doi:10.1093/database/bar009

    Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  Google Scholar 

  26. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  27. M-y Shen, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  Google Scholar 

  28. McGuffin LJ, Buenavista MT, Roche DB (2013) The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 41(W1):W368–W372

    Article  Google Scholar 

  29. Melo F, Sanchez R, Sali A (2002) Statistical potentials for fold assessment. Protein Sci 11(2):430–448

    Article  CAS  Google Scholar 

  30. Eramian D, Eswar N, Shen MY, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted? Protein Sci 17(11):1881–1893

    Article  CAS  Google Scholar 

  31. Eramian D, Shen M-Y, Melo F, Pieper U, Weber B, Sali A (2013) ModEval. http://modbase.compbio.ucsf.edu/evaluation

  32. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Suppl 2):W407–W410

    Article  Google Scholar 

  33. Benkert P, Kunzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37(Web Server issue):8

    Google Scholar 

  34. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  35. Schrodinger, LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1

  36. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  Google Scholar 

  37. http://biophysics.cs.vt.edu/H++

  38. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(Web Server issue):W537–W541

    Article  CAS  Google Scholar 

  39. Sharp K, Honig B (1991) Electrostatic interactions in macromolecules: theory and applications. Ann Rev Biophys Biophys Chem 19:301–332

    Article  Google Scholar 

  40. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TEI, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz KM, Monard G, Needham P, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Salomon-Ferrer R, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2015) AMBER 14. AMBER, 15 edn. University of San Francisco, San Francisco

  41. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

    Article  CAS  Google Scholar 

  42. Li P, Roberts BP, Chakravorty DK, Merz KM (2013) Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput 9(6):2733–2748

    Article  CAS  Google Scholar 

  43. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  44. Walker RC, Crowley MF, Case DA (2008) The implementation of a fast and accurate QM/MM potential method in Amber. J Comput Chem 29(7):1019–1031

    Article  CAS  Google Scholar 

  45. Torras J, Seabra Gde M, Deumens E, Trickey SB, Roitberg AE (2008) A versatile AMBER-Gaussian QM/MM interface through PUPIL. J Comput Chem 29(10):1564–1573

    Article  CAS  Google Scholar 

  46. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268

    Article  CAS  Google Scholar 

  47. Krüger T, Elstner M, Schiffels P, Frauenheim T (2005) Validation of the density-functional based tight-binding approximation method for the calculation of reaction energies and other data. J Chem Phys 122(11):114110

    Article  CAS  Google Scholar 

  48. Moreira NH, Dolgonos G, Aradi B, da Rosa AL, Frauenheim T (2009) Toward an accurate density-functional tight-binding description of zinc-containing compounds. J Chem Theory Comput 5(3):605–614

    Article  CAS  Google Scholar 

  49. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) Hydrogen bonding and stacking interactions of nucleic acid base pairs: a density-functional-theory based treatment. J Chem Phys 114(12):5149–5155

    Article  CAS  Google Scholar 

  50. Lingott T, Merfort I, Steinbrecher T (2012) Free energy calculations on snake venom metalloproteinase BaP1. Chem Biol Drug Des 79(6):990–1000

    Article  CAS  Google Scholar 

  51. Cross JB, Duca JS, Kaminski JJ, Madison VS (2002) The active site of a zinc-dependent metalloproteinase influences the computed pKa of ligands coordinated to the catalytic zinc ion. J Am Chem Soc 124(37):11004–11007

    Article  CAS  Google Scholar 

  52. Fabre B, Filipiak K, Diaz N, Zapico JM, Suarez D, Ramos A, de Pascual-Teresa B (2014) An integrated computational and experimental approach to gaining selectivity for MMP-2 within the gelatinase subfamily. ChemBioChem 15(3):399–412

    Article  CAS  Google Scholar 

  53. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  54. Rassolov VA, Pople JA (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109(4):1223

    Article  CAS  Google Scholar 

  55. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77(7):3654–3665

    Article  CAS  Google Scholar 

  56. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  58. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  59. Joung IS, Cheatham TE 3rd (2009) Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J Phys Chem B 113(40):13279–13290

    Article  CAS  Google Scholar 

  60. Salomon-Ferrer R, Götz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888

    Article  CAS  Google Scholar 

  61. Le Grand S, Götz AW, Walker RC (2013) SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput Phys Commun 184(2):374–380

    Article  CAS  Google Scholar 

  62. Izaguirre JA, Catarello DP, Wozniak JM, Skeel RD (2001) Langevin stabilization of molecular dynamics. J Chem Phys 114:2090–2098

    Article  CAS  Google Scholar 

  63. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  64. Feig M, Karanicolas J, Brooks CLI (2004) MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 22:377–395

    Article  CAS  Google Scholar 

  65. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  66. Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38(3):305–320

    Article  CAS  Google Scholar 

  67. Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285

    Article  CAS  Google Scholar 

  68. Ramos OH, Selistre-de-Araujo HS (2004) Comparative analysis of the catalytic domain of hemorrhagic and non-hemorrhagic snake venom metallopeptidases using bioinformatic tools. Toxicon 44(5):529–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the GRUPIN14-049 (FICyT, Spain) Grant and by the Brazilian Grants CAPES PVE 118/2013 and CAPES PDSE 4165/14-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas Suárez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2015_9889_MOESM1_ESM.docx

SCC-DFTB/AMBER optimized inter-atomic distances for the zinc site in the 4Q1L structure (Table S1). View of the B3LYP/6-31G(d) PCM cluster model of the Zn1 site (Fig. S1). Force field parameters for the Zn1···ligand interactions. Sequence alignment of the templates used in atroxlysin-I model production (Fig. S2). Evaluation of the atroxlysin-I model produced by Prosa II sever (Fig S3).Computed pK a values (Table S2). Details of Ca2+···ligand interactions during the MD simulations (Table S3). Time evolution of RMSDs (Figs S4-S5). Superposition of the MD-averaged structures (Fig. S6). Structural alignment of the templates used in atroxlysin-I model production (Fig. S7). (DOCX 4441 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, R.A., Díaz, N., Nagem, R.A.P. et al. Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations. J Comput Aided Mol Des 30, 69–83 (2016). https://doi.org/10.1007/s10822-015-9889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9889-5

Keywords

Navigation