Skip to main content
Log in

Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The aim of this study was to identify compounds that possess anticonvulsant activity by using a pentylenetetrazol (PTZ)-induced seizure model. Theoretical studies of a set of ligands, explored the binding affinities of the ligands for the GABAA receptor (GABAAR), including some benzodiazepines. The ligands satisfy the Lipinski rules and contain a pharmacophore core that has been previously reported to be a GABAAR activator. To select the ligands with the best physicochemical properties, all of the compounds were analyzed by quantum mechanics and the energies of the highest occupied molecular orbital and lowest unoccupied molecular orbital were determined. Docking calculations between the ligands and the GABAAR were used to identify the complexes with the highest Gibbs binding energies. The identified compound D1 (dibenzo(b,f)(1,4)diazocine-6,11(5H,12H)-dione) was synthesized, experimentally tested, and the GABAAR–D1 complex was submitted to 12-ns-long molecular dynamics (MD) simulations to corroborate the binding conformation obtained by docking techniques. MD simulations were also used to analyze the decomposition of the Gibbs binding energy of the residues involved in the stabilization of the complex. To validate our theoretical results, molecular docking and MD simulations were also performed for three reference compounds that are currently in commercial use: clonazepam (CLZ), zolpidem and eszopiclone. The theoretical results show that the GABAAR–D1, and GABAAR–CLZ complexes bind to the benzodiazepine binding site, share a similar map of binding residues, and have similar Gibbs binding energies and entropic components. Experimental studies using a PTZ-induced seizure model showed that D1 possesses similar activity to CLZ, which corroborates the predicted binding free energy identified by theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chebib M, Johnston GAR (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940

    Article  CAS  Google Scholar 

  2. Khan ZU, Gutierrez A, De Blas AL (1994) The subunit composition of a GABAA/benzodiazepine receptor from rat cerebellum. J Neurochem 63:371–374

    Article  CAS  Google Scholar 

  3. Hanson SM, Morlock EV, Satyshur KA, Czajkowski C (2008) Structural mechanisms underlying benzodiazepine modulation of the GABAA receptor. J Neurosci 28:3490–3499

    Article  CAS  Google Scholar 

  4. Duncalfe LL, Dunn SM (1993) Benzodiazepine binding to GABAA receptors: differential effects of sulphydryl modification. Eur J Pharmacol 246:141–148

    Article  CAS  Google Scholar 

  5. Sigel E (2002) Mapping of the benzodiazepine recognition site on GABA(A) receptors. Curr Top Med Chem 2:833–839

    Article  CAS  Google Scholar 

  6. Rowlett JK, Cook JM, Duke AN, Platt DN (2005) Selective antagonism of GABAA receptor subtypes: an in vivo approach to exploring the therapeutic and side effects of benzodiazepine-type drugs. CNS Spectr 10:40–48

    Google Scholar 

  7. Orser BA (2006) Extrasynaptic GABAA receptors are critical targets for sedative-hypnotic drugs. J Clin Sleep Med 2:S12–S18

    Google Scholar 

  8. Fonlupt P, Croset M, Lagarde M (1990) Benzodiazepine analogues inhibit arachidonate-induced aggregation and thromboxane synthesis in human platelets. Br J Pharmacol 101:920–924

    Article  CAS  Google Scholar 

  9. Migliaria O, Plescia S, Diana P, Di Stephano V, Camarda L, Dallolio R (2004) Syntesis and pharmacological evaluation of 7-substitued 1–ethyl–3,4,10–trimethyl–1,10–dihydro–11H-pyrazolo[3,4–c] [1,6]benzodiazocin–11–one: a new ring system. ARKIVOC V:44–53

  10. Koriatopoulou K, Karousis N, Varvounis G (2008) Novel synthesis of the pyrrolo[2,1–c][1, 4]benzodiazocine ring system via a Dieckmann condensation. Tetrahedron 64:10009–10013

    Article  CAS  Google Scholar 

  11. Venkatachalan SP, Czajkowski C (2012) Structural link between γ-aminobutyric acid type A (GABAA) receptor agonist binding site and inner β-sheet governs channel activation and allosteric drug modulation. J Biol Chem 287:6714–6724

    Article  CAS  Google Scholar 

  12. Morlock EV, Czajkowski C (2011) Different residues in the GABAA receptor benzodiazepine binding pocket mediate benzodiazepine efficacy and binding. Mol Pharmacol 80:14–22

    Article  CAS  Google Scholar 

  13. Muroi Y, Czajkowski C, Jackson MB (2006) Local and global ligand-induced changes in the structure of the GABA(A) receptor. Biochemistry 45:7013–7022

    Article  CAS  Google Scholar 

  14. Xie HB, Sha Y, Wang J, Cheng MS (2013) Some insights into the binding mechanism of the GABAA receptor: a combined docking and MM-GBSA study. J Mol Model 12:5489–5500

    Article  Google Scholar 

  15. Macías-Pérez ME, Martínez-Ramos F, Padilla-Martínez II, Correa-Basurto J, Kispert L, Mendieta-Wejebe JE, Rosales-Hernández MC (2013) Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico. Biosci Rep 33:605–616. doi:10.1042/BSR20130029

    Article  Google Scholar 

  16. Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834

    Article  CAS  Google Scholar 

  17. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26

  18. Dalafave DS, Prisco G (2010) Inhibition of antiapoptotic BCL- XL, BCL-2, and MCL-1 proteins by small molecule mimetics. Cancer Inform 9:169–177

  19. Correa-Basurto J, Flores-Sandoval C, Marín-Cruz J, Rojo-Domınguez A, Espinoza-Fonseca LM, Trujillo-Ferrara JG (2007) Docking and quantum mechanic studies on cholinesterases and their inhibitors. Eur J Med Chem 42:10–19

  20. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan Y, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  Google Scholar 

  21. Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  Google Scholar 

  22. Munthe AW, Strandjord RE (1973) Clonazepam in the treatment of epileptic seizures. Acta Neurol Scand Suppl 53:97–102

    Google Scholar 

  23. Martínez C, Rabadán FP, Galán J (1977) Modification of clonazepam anticonvulsive activity by its association with other anti-epileptic drugs. Experientia 33:640–642

    Article  Google Scholar 

  24. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. Method. J Comp Chem 10(2):209–220

    Article  CAS  Google Scholar 

  25. Stewart JJP (1989) Optimization of parameters for semiempirical methods II. Applications. J Comp Chem 10:221–264

    Article  CAS  Google Scholar 

  26. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Godbout N, Salahub D, Andzelm J, Wimmer E (1992) Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc. (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, CT

  30. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  32. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich JC, Smith R, Stote J, Straub M, Watanabe J, Wirkiewicz-Kuczera DY, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  33. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  34. Goodford PJ (1985) A computational procedure for determining energetically favourable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  Google Scholar 

  35. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  36. Wang M, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  37. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1173

    Article  CAS  Google Scholar 

  38. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  40. Van Gunsteren WF, Berendsen HJC (1997) Algorithm for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327

    Article  Google Scholar 

  41. Darden T, York D, Pedersen L (1993) Particle mesh Ewald-an N.log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, Van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  43. DeLano WL (2002) The PyMOL molecular graphics system, DeLano Scientific LLC, San Carlos, CA. http://www.pymol.org

  44. Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  45. Kuhn B, Kollman PA (2000) Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem 43:3786–3791

    Article  CAS  Google Scholar 

  46. Paudler WW, Zeiler AG (1969) Diazocine chemistry. V. Synthesis and rearrangement of dibenzo[b, f] [1, 4]diazocine-6,11(5H,12H)-dione. J Org Chem 34:2138–2140

    Article  CAS  Google Scholar 

  47. Venugopalan B, Lyer SS, De Souza NJ (1985) TiCl4-induced functionalization of dibenzo[b, f] [1, 4]diazocine-6,11-(5H,12H)-diones. Heterocycles 23:1425–1430

    Article  CAS  Google Scholar 

  48. Marescaux C, Micheletti G, Vergnes M, Depaulis A, Rumbach L, Warter JM (1984) A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 25:326–331

    Article  CAS  Google Scholar 

  49. Schmoll H, Brandan I, Grecksch G, Walker L, Kessler C, Popa A (2003) Kindling status in Sprague-Dawley rats induced by pentylenetetrazole. Am J Pathol 162:1027–1034

    Article  CAS  Google Scholar 

  50. López ML, González ME, Neri L, Hong E, Rocha LL (2005) 5-HT1A receptor agonists modify epileptic seizures in three experimental models in rats. Neuropharmacology 49:367–375

    Article  Google Scholar 

  51. Hanson SM, Morlock EV, Satyshur KA, Czajkowski C (2008) Structural requirements for eszopiclone and zolpidem binding to the GABAA receptor are different. J Med Chem 51:7243–7252

    Article  CAS  Google Scholar 

  52. Berezhnoy D, Gibbs TT, Farb DH (2009) Docking of 1,4-benzodiazepines in the alpha1/gamma2 GABA(A) receptor modulator site. Mol Pharmacol 76:440–450

    Article  CAS  Google Scholar 

  53. Kim KS, Lee JY, Lee SJ, Ha T, Kim DH (1994) On binding forces between aromatic ring and quaternary ammonium compounds. J Am Chem Soc 116:7399–7400

    Article  CAS  Google Scholar 

  54. Ehlert FJ, Ragan J, Chen A, Roeske WR, Yamamura HI (1982) Modulation of benzodiazepine receptor binding: insight into pharmacological efficacy. Eur J Pharmacol 78:249–253

    Article  CAS  Google Scholar 

  55. Morelli M, Gee KW, Yamamura HI (1982) The effect of GABA on in vitro binding of two novel non-benzodiazepines, PK 8165 and CGS 8216, to benzodiazepine receptors in the rat brain. Life Sci 31:77–81

    Article  CAS  Google Scholar 

  56. Calabrese EJ, Baldwin LA (2003) Hormesis: the dose–response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  Google Scholar 

  57. Riccia L, Valotia M, Sgaraglia G, Frosini M (2007) Neuroprotection afforded by diazepam against oxygen/glucose deprivation-induced injury in rat cortical brain slices. Eur J Pharmacol 561:80–84

    Article  Google Scholar 

  58. Kouda K, Iki M (2010) Beneficial effects of mild stress (hermetic effects): dietary restriction and health. J Physiol Anthropol 29:127–132

    Article  Google Scholar 

  59. Calabrese EJ (2010) Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol 29:249–261

    Article  Google Scholar 

  60. Calabrese EJ (2008) An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit Rev Toxicol 36:489–542

    Article  Google Scholar 

  61. Miglaria O, Plescia S, Patrizia D, Di Stefano V, Camarda L, Dall’Olio R (2004) Synthesis and pharmacological evaluation of 7-subsituted 1-ethyl-3,4,10-trimethyl-1,10-dihydro-11H-pyrazolo[3,4-c][1,6]benzodiazocin-11-one. A new ring system. ARKIVOC. V:44–53

  62. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng 8:127–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CONACYT (Grant: 132353), CYTED: 214RT0482 and SIP (project 20140252)-COFAA-PIFI/IPN for financial support. Thanks to Cinthya Czajkowski Ph.D. (University of Wisconsin-Madison) for providing us with the GABAAR coordinate. In memory of Dr. J. Samuel Cruz-Sánchez.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Correa-Basurto or Fernando Rafael Ramos-Morales.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2858 kb)

Supplementary material 2 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra-Vélez, M.V., Correa-Basurto, J., Matus, M.H. et al. Seeking potential anticonvulsant agents that target GABAA receptors using experimental and theoretical procedures. J Comput Aided Mol Des 28, 1217–1232 (2014). https://doi.org/10.1007/s10822-014-9798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9798-z

Keywords

Navigation