Skip to main content
Log in

Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein–ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure–activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. doi:10.1038/cr.2011.22

    Article  CAS  Google Scholar 

  2. Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447. doi:10.1038/nrm3382

    Article  CAS  Google Scholar 

  3. Arrowsmith CH, Bountra C, Fish PV et al (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400. doi:10.1038/nrd3674

    Article  CAS  Google Scholar 

  4. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  Google Scholar 

  5. Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409:36–46. doi:10.1016/j.jmb.2011.01.040

    Article  CAS  Google Scholar 

  6. Helin K, Dhanak D (2013) Chromatin proteins and modifications as drug targets. Nature 502:480–488. doi:10.1038/nature12751

    Article  CAS  Google Scholar 

  7. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  Google Scholar 

  8. Jones P (2012) Development of second generation epigenetic agents. MedChemComm 3:135. doi:10.1039/c1md00199j

    Article  CAS  Google Scholar 

  9. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339. doi:10.1038/nm.2305

    Article  Google Scholar 

  10. Copeland RA, Moyer MP, Richon VM (2013) Targeting genetic alterations in protein methyltransferases for personalized cancer therapeutics. Oncogene 32:939–946. doi:10.1038/onc.2012.552

    Article  CAS  Google Scholar 

  11. Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8:724–732. doi:10.1038/nrd2974

    Article  CAS  Google Scholar 

  12. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227. doi:10.1186/gb-2005-6-8-227

    Article  Google Scholar 

  13. Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63:2755–2763. doi:10.1007/s00018-006-6274-5

    Article  CAS  Google Scholar 

  14. Nguyen KT, Li F, Poda G et al (2013) Strategy to target the substrate binding site of SET domain protein methyltransferases. J Chem Inf Model 53:681–691. doi:10.1021/ci300596x

    Article  CAS  Google Scholar 

  15. Schapira M (2011) Structural chemistry of human SET domain protein methyltransferases. Curr Chem Genomics 5:85–94. doi:10.2174/1875397301005010085

    Article  CAS  Google Scholar 

  16. Campagna-Slater V, Mok MW, Nguyen KT et al (2011) Structural chemistry of the histone methyltransferases cofactor binding site. J Chem Inf Model 51:612–623. doi:10.1021/ci100479z

    Article  CAS  Google Scholar 

  17. Verma SK, Tian X, La France LV et al (2012) Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2. ACS Med Chem Lett 3:1091–1096. doi:10.1021/ml3003346

    Article  CAS  Google Scholar 

  18. Qi W, Chan H, Teng L et al (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci 109:21360–21365. doi:10.1073/pnas.1210371110

    Article  CAS  Google Scholar 

  19. McCabe MT, Ott HM, Ganji G et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112. doi:10.1038/nature11606

    Article  CAS  Google Scholar 

  20. Knutson SK, Wigle TJ, Warholic NM et al (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896. doi:10.1038/nchembio.1084

    CAS  Google Scholar 

  21. Knutson SK, Warholic NM, Wigle TJ et al (2013) Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci 110:7922–7927. doi:10.1073/pnas.1303800110

    Article  CAS  Google Scholar 

  22. Chase A, Cross NCP (2011) Aberrations of EZH2 in cancer. Clin Cancer Res 17:2613–2618. doi:10.1158/1078-0432.CCR-10-2156

    Article  CAS  Google Scholar 

  23. Chang C-J, Hung M-C (2012) The role of EZH2 in tumour progression. Br J Cancer 106:243–247. doi:10.1038/bjc.2011.551

    Article  CAS  Google Scholar 

  24. Tan J, Yan Y, Wang X et al (2013) EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin 35:161–174. doi:10.1038/aps.2013.161

    Article  Google Scholar 

  25. Wu H, Zeng H, Dong A et al (2013) Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. PLoS ONE 8:e83737. doi:10.1371/journal.pone.0083737

    Article  Google Scholar 

  26. Antonysamy S, Condon B, Druzina Z et al (2013) Structural context of disease-associated mutations and putative mechanism of autoinhibition revealed by X-ray crystallographic analysis of the EZH2-SET domain. PLoS ONE 8:e84147. doi:10.1371/journal.pone.0084147

    Article  Google Scholar 

  27. Van Aller GS, Pappalardi MB, Ott HM et al (2013) Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. ACS Chem Biol. doi:10.1021/cb4008748

    Google Scholar 

  28. Tommaso PD, Moretti S, Xenarios I et al (2011) T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39:W13–W17. doi:10.1093/nar/gkr245

    Article  Google Scholar 

  29. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  Google Scholar 

  30. Xiao B, Jing C, Wilson JR et al (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421:652–656. doi:10.1038/nature01378

    Article  CAS  Google Scholar 

  31. Couture J-F, Collazo E, Brunzelle JS, Trievel RC (2005) Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Genes Dev 19:1455–1465. doi:10.1101/gad.1318405

    Article  CAS  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  33. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1006/jmbi.1993.1626

    Article  Google Scholar 

  34. Wu H, Min J, Lunin VV et al (2010) Structural biology of human H3K9 methyltransferases. PLoS ONE 5:e8570. doi:10.1371/journal.pone.0008570

    Article  Google Scholar 

  35. Olsson MHM, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525–537. doi:10.1021/ct100578z

    Article  CAS  Google Scholar 

  36. Case DA, Darden TA, Cheatham TE III et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  37. Hornak V, Abel R, Okur A et al (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725. doi:10.1002/prot.21123

    Article  CAS  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  39. Stacklies W, Xia F, Gräter F (2009) Dynamic allostery in the methionine repressor revealed by force distribution analysis. PLoS Comput Biol 5:e1000574. doi:10.1371/journal.pcbi.1000574

    Article  Google Scholar 

  40. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919–11929. doi:10.1063/1.1755656

    Article  CAS  Google Scholar 

  41. Wang Y, Harrison CB, Schulten K, McCammon JA (2011) Implementation of accelerated molecular dynamics in NAMD. Comput Sci Discov 4:015002. doi:10.1088/1749-4699/4/1/015002

    Article  Google Scholar 

  42. Hamelberg D, de Oliveira CAF, McCammon JA (2007) Sampling of slow diffusive conformational transitions with accelerated molecular dynamics. J Chem Phys 127:155102. doi:10.1063/1.2789432

    Article  Google Scholar 

  43. De Oliveira CAF, Grant BJ, Zhou M, McCammon JA (2011) Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation. PLoS Comput Biol 7:e1002178. doi:10.1371/journal.pcbi.1002178

    Article  Google Scholar 

  44. Wereszczynski J, McCammon JA (2012) Accelerated molecular dynamics in computational drug design. In: Baron R (ed) Comput Drug Discov Des. Springer, New York, pp 515–524

    Chapter  Google Scholar 

  45. Mücksch C, Urbassek HM (2013) Enhancing protein adsorption simulations by using accelerated molecular dynamics. PLoS ONE 8:e64883. doi:10.1371/journal.pone.0064883

    Article  Google Scholar 

  46. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  47. Weill N, Rognan D (2010) Alignment-free ultra-high-throughput comparison of druggable protein–ligand binding sites. J Chem Inf Model 50:123–135. doi:10.1021/ci900349y

    Article  CAS  Google Scholar 

  48. Kellenberger E, Muller P, Schalon C et al (2006) sc-PDB: an annotated database of druggable binding sites from the protein data bank. J Chem Inf Model 46:717–727. doi:10.1021/ci050372x

    Article  CAS  Google Scholar 

  49. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  50. (2013) Marvin 6.0.3. ChemAxon

  51. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. doi:10.1002/jcc.20035

    Article  CAS  Google Scholar 

  52. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. doi:10.1016/j.jmgm.2005.12.005

    Article  Google Scholar 

  53. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280. doi:10.1021/j100142a004

    Article  CAS  Google Scholar 

  54. Dupradeau F-Y, Pigache A, Zaffran T et al (2010) The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys 12:7821–7839. doi:10.1039/C0CP00111B

    Article  CAS  Google Scholar 

  55. Neese F (2012) ORCA, version 2.9, an ab initio, density functional and semiempirical program package. Max Planck-Institute for Bioinorganic Chemistry: Mülheim a.d., Ruhr, Germany

  56. Vanquelef E, Simon S, Marquant G et al (2011) R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39:W511–W517. doi:10.1093/nar/gkr288

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  58. Schrödinger LLC (2010) The PyMOL molecular graphics system, version 1.3

  59. Dunbrack RL, Cohen FE (1997) Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6:1661–1681. doi:10.1002/pro.5560060807

    Article  CAS  Google Scholar 

  60. Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27:3276–3285. doi:10.1093/bioinformatics/btr550

    Article  CAS  Google Scholar 

  61. Guilloux VL, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168. doi:10.1186/1471-2105-10-168

    Article  Google Scholar 

  62. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  63. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  64. Koukos PI, Glykos NM (2013) Grcarma: a fully automated task-oriented interface for the analysis of molecular dynamics trajectories. J Comput Chem 34:2310–2312. doi:10.1002/jcc.23381

    Article  CAS  Google Scholar 

  65. Williams T, Kelley C (2013) Gnuplot 4.6: an interactive plotting program

  66. Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. doi:10.1021/ct300418h

    Article  CAS  Google Scholar 

  67. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. doi:10.1021/ar000033j

    Article  CAS  Google Scholar 

  68. Hayes JM, Archontis G (2012) MM-GB(PB)SA calculations of protein–ligand binding free energies. Mol Dyn Stud Synth Biol Macromol

  69. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121:8133–8143. doi:10.1021/ja990935j

    Article  CAS  Google Scholar 

  70. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562–12566. doi:10.1073/pnas.202427399

    Article  CAS  Google Scholar 

  71. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603. doi:10.1103/PhysRevLett.100.020603

    Article  Google Scholar 

  72. Bonomi M, Branduardi D, Bussi G et al (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972. doi:10.1016/j.cpc.2009.05.011

    Article  CAS  Google Scholar 

  73. Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349. doi:10.1038/nature09784

    Article  CAS  Google Scholar 

  74. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856. doi:10.1038/nrc1991

    Article  CAS  Google Scholar 

  75. Ciferri C, Lander GC, Maiolica A et al (2012) Molecular architecture of human polycomb repressive complex 2. eLife. doi:10.7554/eLife.00005

  76. Konze KD, Ma A, Li F et al (2013) An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem Biol 8:1324–1334. doi:10.1021/cb400133j

    Article  CAS  Google Scholar 

  77. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. doi:10.1021/ci100275a

    Article  CAS  Google Scholar 

  78. Salonen LM, Ellermann M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842. doi:10.1002/anie.201007560

    Article  CAS  Google Scholar 

  79. Leung CS, Leung SSF, Tirado-Rives J, Jorgensen WL (2012) Methyl effects on protein–ligand binding. J Med Chem 55:4489–4500. doi:10.1021/jm3003697

    Article  CAS  Google Scholar 

  80. Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47:2499–2510. doi:10.1021/jm030563w

    Article  CAS  Google Scholar 

  81. Hao M-H, Haq O, Muegge I (2007) Torsion angle preference and energetics of small-molecule ligands bound to proteins. J Chem Inf Model 47:2242–2252. doi:10.1021/ci700189s

    Article  CAS  Google Scholar 

  82. Sneeringer CJ, Scott MP, Kuntz KW et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci 107:20980–20985. doi:10.1073/pnas.1012525107

    Article  CAS  Google Scholar 

  83. McCabe MT, Graves AP, Ganji G et al (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci 109:2989–2994. doi:10.1073/pnas.1116418109

    Article  CAS  Google Scholar 

  84. Majer CR, Jin L, Scott MP et al (2012) A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett 586:3448–3451. doi:10.1016/j.febslet.2012.07.066

    Article  CAS  Google Scholar 

  85. Copeland RA (2013) Molecular pathways: protein methyltransferases in cancer. Clin Cancer Res 19:6344–6350. doi:10.1158/1078-0432.CCR-13-0223

    Article  CAS  Google Scholar 

  86. Garapaty-Rao S, Nasvechuk C, Gagnon A et al (2013) Identification of EZH2 and EZH1 small molecule inhibitors with selective impact on diffuse large B cell lymphoma cell growth. Chem Biol. doi:10.1016/j.chembiol.2013.09.013

    Google Scholar 

  87. Nasveschuk CG, Gagnon A, Garapaty-Rao S et al (2014) Discovery and optimization of tetramethylpiperidinyl benzamides as inhibitors of EZH2. ACS Med Chem Lett. doi:10.1021/ml400494b

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Education and Science of the Republic of Serbia through Project Number 172009. Results presented in this work were obtained using the computational resources of the PARADOX cluster at the Scientific Computing Laboratory of the Institute of Physics Belgrade, Serbia, as part of the High-Performance Computing Infrastructure for South East Europe’s Research Communities (HP-SEE). HP-SEE is a project co-funded by the European Commission (under Contract Number 261499) through the Seventh Framework Programme (http://www.hp-see.eu/). The authors gratefully acknowledge Dr. Jelena Ranđelović (University of Belgrade—Faculty of Pharmacy, Department of Organic Chemistry) for insightful discussions and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavica Erić.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinić, M., Zloh, M. & Erić, S. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2. J Comput Aided Mol Des 28, 1109–1128 (2014). https://doi.org/10.1007/s10822-014-9788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9788-1

Keywords

Navigation