Skip to main content
Log in

NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Due to the inherently flexible nature of a protein–protein interaction surface, it is difficult both to inhibit the association with a small molecule, and to predict how it might bind to the surface. In this study, we have examined small molecules that mediate the interaction between a WWI motif on the C-helix of HIV-1 glycoprotein-41 (gp41) and a deep hydrophobic pocket contained in the interior N-helical trimer. Association between these two components of gp41 leads to virus–cell and cell–cell fusion, which could be abrogated in the presence of an inhibitor that binds tightly in the pocket. We have studied a comprehensive combinatorial library of α-helical peptidomimetics, and found that compounds with strongly hydrophobic side chains had the highest affinity. Computational docking studies produced multiple possible binding modes due to the flexibility of both the binding site and the peptidomimetic compounds. We applied a transferred paramagnetic relaxation enhancement experiment to two selected members of the library, and showed that addition of a few experimental constraints enabled definitive identification of unique binding poses. Computational docking results were extremely sensitive to side chain conformations, and slight variations could preclude observation of the experimentally validated poses. Different receptor structures were required for docking simulations to sample the correct pose for the two compounds. The study demonstrated the sensitivity of predicted poses to receptor structure and indicated the importance of experimental verification when docking to a malleable protein–protein interaction surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ou HD, May AP, O’Shea CC (2011) Wiley Interdiscip Rev Syst Biol Med 3:48

    Article  CAS  Google Scholar 

  2. Liu S, Wu S, Jiang S (2007) Curr Pharm Des 13:143

    Article  CAS  Google Scholar 

  3. Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS (2007) Proc Natl Acad Sci USA 104:16828

    Article  CAS  Google Scholar 

  4. Welch BD, Francis JN, Redman JS, Paul S, Weinstock MT, Reeves JD, Lie YS, Whitby FG, Eckert DM, Hill CP, Root MJ, Kay MS (2010) J Virol 84:11235

    Article  CAS  Google Scholar 

  5. Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS (1999) Cell 99:103

    Article  CAS  Google Scholar 

  6. Naider F, Anglister J (2009) Curr Opin Struct Biol 19:473

    Article  CAS  Google Scholar 

  7. Allen KA, Rizzo M, Sadosty AT (2012) J Emerg Med 43:93

    Article  Google Scholar 

  8. Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK (2004) Antimicrob Agents Chemother 48:4349

    Article  CAS  Google Scholar 

  9. Liu K, Lu H, Hou L, Qi Z, Teixeira C, Barbault F, Fan BT, Liu S, Jiang S, Xie L (2008) J Med Chem 51:7843

    Article  CAS  Google Scholar 

  10. Teixeira C, Barbault F, Rebehmed J, Liu K, Xie L, Lu H, Jiang S, Fan B, Maurel F (2008) Bioorg Med Chem 16:3039

    Article  CAS  Google Scholar 

  11. Katritzky AR, Tala SR, Lu H, Vakulenko AV, Chen QY, Sivapackiam J, Pandya K, Jiang S, Debnath AK (2009) J Med Chem 52:7631

    Article  CAS  Google Scholar 

  12. Jiang S, Debnath AK (2000) Biochem Biophys Res Commun 270:153

    Article  CAS  Google Scholar 

  13. He Y, Liu S, Jing W, Lu H, Cai D, Chin DJ, Debnath AK, Kirchhoff F, Jiang S (2007) J Biol Chem 282:25631

    Article  CAS  Google Scholar 

  14. Jahnke W, Rudisser S, Zurini M (2001) J Am Chem Soc 123:3149

    Article  CAS  Google Scholar 

  15. Balogh E, Wu D, Zhou G, Gochin M (2009) J Am Chem Soc 131:2821

    Article  CAS  Google Scholar 

  16. Gochin M, Zhou G, Phillips AH (2010) ACS Chem Biol 6:267

    Article  Google Scholar 

  17. Gochin M, Guy RK, Case MA (2003) Angew Chem Int Ed 42:5325

    Article  CAS  Google Scholar 

  18. Gochin M, Savage R, Hinckley S, Cai L (2006) Biol Chem 387:477

    Article  CAS  Google Scholar 

  19. Cai L, Gochin M (2007) Antimicrob Agents Chemother 51:2388

    Article  CAS  Google Scholar 

  20. Gochin M, Cai L (2009) J Med Chem 52:4338

    Article  CAS  Google Scholar 

  21. Cai L, Balogh E, Gochin M (2009) Antimicrob Agents Chemother 53:2444

    Article  CAS  Google Scholar 

  22. Gochin M (2012) Assay Drug Dev Technol 10:407

    Article  CAS  Google Scholar 

  23. Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) J Am Chem Soc 131:5564

    Article  CAS  Google Scholar 

  24. Whitby LR, Boyle KE, Cai L, Yu X, Gochin M, Boger DL (2012) Bioorg Med Chem Lett 22:2861

    Article  CAS  Google Scholar 

  25. Cheng S, Tarby CM, Comer DD, Williams JP, Caporale LH, Myers PL, Boger DL (1996) Bioorg Med Chem 4:727

    Article  CAS  Google Scholar 

  26. Boger DL, Tarby CM, Myers PL, Caporale LH (1996) J Am Chem Soc 118:2109

    Article  CAS  Google Scholar 

  27. Cheng S, Comer DD, Williams JP, Myers PL, Boger DL (1996) J Am Chem Soc 118:2567

    Article  CAS  Google Scholar 

  28. Boger DL, Desharnais J, Capps K (2003) Angew Chem Int Ed 42:4138

    Article  CAS  Google Scholar 

  29. Wexler-Cohen Y, Shai Y (2007) Faseb J 21:3677

    Article  CAS  Google Scholar 

  30. Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) J Virol 72:2855

    CAS  Google Scholar 

  31. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Antimicrob Agents Chemother 46:1896

    Article  CAS  Google Scholar 

  32. Ciminale V, Felber BK, Campbell M, Pavlakis GN (1990) AIDS Res Hum Retroviruses 6:1281

    CAS  Google Scholar 

  33. Meiboom S, Gill D (1958) Rev Sci Instrum 29:688

    Article  CAS  Google Scholar 

  34. Carr HY, Purcell EM (1954) Phys Rev 94:630

  35. Hoult D (1976) J Magn Reson 21:337

    CAS  Google Scholar 

  36. Tosner Z, Skoch A, Kowalewski J (2010) ChemPhysChem 11:638

    Article  CAS  Google Scholar 

  37. Mulder FA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) J Am Chem Soc 123:967

    Article  CAS  Google Scholar 

  38. Aue W, Bartholdi E, Ernst R (1976) J Chem Phys 64:2229

    Google Scholar 

  39. Solomon I, Bloembergen N (1956) J Chem Phys 25:261

    Article  CAS  Google Scholar 

  40. Trott O, Olson AJ (2010) J Comput Chem 31:455

    CAS  Google Scholar 

  41. Caffrey M (2001) Biochim Biophys Acta 1536:116

    Article  CAS  Google Scholar 

  42. Stewart KD, Huth JR, Ng TI, McDaniel K, Hutchinson RN, Stoll VS, Mendoza RR, Matayoshi ED, Carrick R, Mo H, Severin J, Walter K, Richardson PL, Barrett LW, Meadows R, Anderson S, Kohlbrenner W, Maring C, Kempf DJ, Molla A, Olejniczak ET (2010) Bioorg Med Chem Lett 20:612

    Article  CAS  Google Scholar 

  43. Kleywegt GJ, Henrick K, Dodson EJ, van Aalten DM (2003) Structure 11:1051

    Article  CAS  Google Scholar 

  44. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) J Magn Reson 160:65

    Article  CAS  Google Scholar 

  45. Iwahara J, Schwieters CD, Clore GM (2004) J Am Chem Soc 126:5879

    Article  CAS  Google Scholar 

  46. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Nature 387:426

    Article  CAS  Google Scholar 

  47. Chan DC, Fass D, Berger JM, Kim PS (1997) Cell 89:263

    Article  CAS  Google Scholar 

  48. Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM (1998) EMBO J 17:4572

    Article  CAS  Google Scholar 

  49. Springman EB personal communication

  50. Penfold BR, White JCB (1959) Acta Cryst 12:130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Institutes of Health (NS059403, GM087998, MG), (CA078045, DLB). We thank E. Balogh and D. Wu for technical assistance in the collection of data for Fig. 1 and Table 1. Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081). The authors also gratefully acknowledge use of the UC Berkeley Biomolecular NMR facility. The authors thank Dr. Eric Springman at Locus Pharmaceuticals (Ansaris) for providing the coordinates of 3p7k prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Gochin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6436 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gochin, M., Whitby, L.R., Phillips, A.H. et al. NMR-assisted computational studies of peptidomimetic inhibitors bound in the hydrophobic pocket of HIV-1 glycoprotein 41. J Comput Aided Mol Des 27, 569–582 (2013). https://doi.org/10.1007/s10822-013-9662-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9662-6

Keywords

Navigation