Skip to main content

Advertisement

Log in

Seminal cell–free DNA as a potential marker for in vitro fertility of Nellore bulls

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to identify a marker for freezability and in vitro fertility of sperm samples before freezing.

Methods

Semen was collected from nine Nelore bulls; half of the ejaculate was used for seminal plasma cell–free DNA (cfDNA) quantification, and the other half was cryopreserved. Evaluation of sperm movement using computer-assisted semen analysis and plasma membrane integrity and stability, acrosomal integrity, apoptosis, and mitochondrial potential using flow cytometry were performed on fresh and frozen/thawed semen at 0, 3, 6, and 12 h after thawing. Frozen/thawed sperm was also used for in vitro embryo production. cfDNA was extracted from each bull, and the total DNA and number of cell-free mitochondrial DNA (cfmtDNA) copies were quantified. Semen from each animal was used for IVF, and cleavage, blastocyst formation, and cell counts were evaluated.

Results

Two groups were formed and compared based on the concentrations of cfDNA and cfmDNA present: low-cfDNA and high-cfDNA and low-cfmtDNA and high-cfmtDNA. Up to 12 h post-thawing, there were no differences between the groups in the majority of the sperm parameters evaluated. Cleavage, day 6 and 7 blastocyst rates, and the number of cells were higher in the high cfDNA group than in the low cfDNA group. Similar results were observed for cfmtDNA, except for the number of cells, which was similar between the groups.

Conclusion

The concentration of cfDNA and the relative number of copies of cfmtDNA in seminal plasma cannot predict the freezability of semen but can be used to predict in vitro embryo production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grötter LG, Cattaneo L, Marini PE, Kjelland ME, Ferré LB. Recent advances in bovine sperm cryopreservation techniques with a focus on sperm post-thaw quality optimization. Reprod Domest Anim. 2019;54:655–65.

    Article  PubMed  Google Scholar 

  2. Ugur MR, Saber Abdelrahman A, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, et al. Advances in cryopreservation of bull sperm. Front Vet Sci. 2019;6.

  3. Nagata MB, Egashira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, et al. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J Anim Sci Biotechnol. 2019;10:91.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holt WV. Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology. 2000;53:47–58.

    Article  CAS  PubMed  Google Scholar 

  5. Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60–61:481–92.

    Article  PubMed  Google Scholar 

  6. Loomis PR, Graham JK. Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim Reprod Sci. 2008;105:119–28.

    Article  CAS  PubMed  Google Scholar 

  7. Yeste M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85:47–64.

    Article  CAS  PubMed  Google Scholar 

  8. Palma GA, Sinowatz F. Male and female effects on the in vitro production of bovine embryos. Anat Histol Embryol. 2004;33:257–62.

    Article  CAS  PubMed  Google Scholar 

  9. Alomar M, Tasiaux H, Remacle S, George F, Paul D, Donnay I. Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls. Anim Reprod Sci. 2008;107:48–61.

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira CS, Saraiva NZ, de Lima MR, Oliveira LZ, Serapião RV, Borges CAV, et al. Kinetics data from bovine sex-specific embryo development from three different bulls. Data Brief. 2016;7:1211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leme LO, Carvalho JO, Franco MM, Dode MAN. Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology. 2020;141:219–27.

    Article  CAS  PubMed  Google Scholar 

  12. Rodríguez-Martínez H. Can we increase the estimative value of semen assessment?*. Reprod Domest Anim. 2006;41:2–10.

    Article  PubMed  Google Scholar 

  13. Kordan W, Fraser L, Wysocki P, Strzeżek R, Lecewicz M, Mogielnicka-Brzozowska M, et al. Semen quality assessments and their significance in reproductive technology. Pol J Vet Sci. 2013;16:823–33.

    Article  CAS  PubMed  Google Scholar 

  14. Santolaria P, Vicente-Fiel S, Palacín I, Fantova E, Blasco ME, Silvestre MA, et al. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim Reprod Sci. 2015;163:82–8.

    Article  CAS  PubMed  Google Scholar 

  15. Morrell JM, Kumaresan A, Johannisson A. Practical implications of sperm selection techniques for improving reproduction. Anim Reprod. 2017;14:572–80.

    Article  Google Scholar 

  16. Gomes FP, Park R, Viana AG, Fernandez-Costa C, Topper E, Kaya A, et al. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep. 2020;10:14661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Killian GJ, Chapman DA, Rogowski LA. Fertility-associated proteins in Holstein bull seminal plasma1. Biol Reprod. 1993;49:1202–7.

    Article  CAS  PubMed  Google Scholar 

  18. Cancel AM, Chapman DA, Killian GJ. Osteopontin is the 55-Kilodalton Fertility-Associated Protein in Holstein Bull Seminal Plasma1. Biol Reprod. 1997;57:1293–301.

    Article  CAS  PubMed  Google Scholar 

  19. Viana AGA, Martins AMA, Pontes AH, Fontes W, Castro MS, Ricart CAO, et al. Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep. 2018;8:16323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Willforss J, Morrell JM, Resjö S, Hallap T, Padrik P, Siino V, et al. Stable bull fertility protein markers in seminal plasma. J Proteomics. 2021;236:104135.

    Article  CAS  PubMed  Google Scholar 

  21. Chou JS, Jacobson JD, Patton WC, King A, Chan PJ. Modified isocratic capillary electrophoresis detection of cell-free DNA in semen. J Assist Reprod Genet. 2004;21:397–400.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li H-G, Huang S-Y, Zhou H, Liao A-H, Xiong C-L. Quick recovery and characterization of cell-free DNA in seminal plasma of normozoospermia and azoospermia: implications for non-invasive genetic utilities. Asian J Androl. 2009;11:703–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Pizio P, Celton N, Menoud PA, Belloc S, Cohen Bacrie M, Belhadri‐Mansouri N, et al. Seminal cell‐free DNA and sperm characteristic’s: an added biomarker for male infertility investigation. Andrologia. 2021;53.

  24. Costa F, Barbisan F, Assmann CE, Araújo NKF, de Oliveira AR, Signori JP, et al. Seminal cell-free DNA levels measured by PicoGreen fluorochrome are associated with sperm fertility criteria. Zygote. 2017;25:111–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. Taylor and Francis Inc.; 2019;1057–67.

  26. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA. Clin Chim Acta. 2001;313:139–42.

    Article  CAS  PubMed  Google Scholar 

  27. Suraj S, Dhar C, Srivastava S. Circulating nucleic acids: an analysis of their occurrence in malignancies. Biomed Rep. 2017;6:8–14.

    Article  CAS  PubMed  Google Scholar 

  28. Kohler C, Radpour R, Barekati Z, Asadollahi R, Bitzer J, Wight E, et al. Levels of plasma circulating cell free nuclear and mitochondrial DNA as potential biomarkers for breast tumors. Mol Cancer. 2009;8:105.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ellinger J, Albers P, Müller SC, Von Ruecker A, Bastian PJ. Circulating mitochondrial DNA in the serum of patients with testicular germ cell cancer as a novel noninvasive diagnostic biomarker. BJU Int. 2009;104:48–52.

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Shen Q, Zhao X, Zou M, Shao S, Li J, et al. Cell-free mitochondrial DNA in human follicular fluid: a promising bio-marker of blastocyst developmental potential in women undergoing assisted reproductive technology. Reprod Biol Endocrinol. 2019;17:54.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Liao T, Zhu L, Lin X, Wu R, Jin L. Seminal plasma cell-free mitochondrial DNA copy number is associated with human semen quality. Eur J Obstet Gynecol Reprod Biol. 2018;231:164–8.

    Article  CAS  PubMed  Google Scholar 

  32. Shilpa M, Selvaraju S, GirishKumar V, Parthipan S, Binsila KB, Arangasamy A, et al. Novel insights into the role of cell-free seminal mRNAs on semen quality and cryotolerance of spermatozoa in bulls (Bos taurus). Reprod Fertil Dev. 2017;29:2446.

    Article  CAS  PubMed  Google Scholar 

  33. Colégio Brasileiro de Reprodução Animal (CBRA). Manual para exame andrológico e avaliação de sêmen animal. Colégio Brasileiro de Reprodução Animal. 2013;

  34. Pons-Rejraji H, Bailey JL, Leclerc P. Cryopreservation affects bovine sperm intracellular parameters associated with capacitation and acrosome exocytosis. Reprod Fertil Dev. 2009;21:525.

    Article  CAS  PubMed  Google Scholar 

  35. Ponti G, Maccaferri M, Manfredini M, Micali S, Torricelli F, Milandri R, et al. Quick assessment of cell-free DNA in seminal fluid and fragment size for early non-invasive prostate cancer diagnosis. Clin Chim Acta. 2019;497:76–80.

    Article  CAS  PubMed  Google Scholar 

  36. Cunha ATM, Carvalho JO, Kussano NR, Martins CF, Mourão GB, Dode MAN. Bovine epididymal spermatozoa: resistance to cryopreservation and binding ability to oviductal cells. Cryobiology. 2016;73:348–55.

    Article  CAS  PubMed  Google Scholar 

  37. Cunha ATM, Carvalho JO, Guimarães ALS, Leme LO, Caixeta FM, Viana JHM, et al. Bovine epididymal spermatozoa treatment for in vitro fertilization: Heparin accelerates fertilization and enables a reduction in coincubation time. PLoS ONE. 2019;14:e0209692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Celeghini E, De Arruda R, De Andrade A, Nascimento J, Raphael C. Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reprod Domest Anim. 2007;42:479–88.

    Article  CAS  PubMed  Google Scholar 

  39. Parrish JJ, Krogenaes A, Susko-Parrish JL. Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology. 1995;44:859–69.

    Article  CAS  PubMed  Google Scholar 

  40. Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using sofaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52:683–700.

    Article  CAS  PubMed  Google Scholar 

  41. Velazquez MA, Hadeler K-G, Herrmann D, Kues WA, Rémy B, Beckers J-F, et al. In vivo oocyte IGF-1 priming increases inner cell mass proliferation of in vitro-formed bovine blastocysts. Theriogenology. 2012;78:517–27.

    Article  CAS  PubMed  Google Scholar 

  42. Lemma A. Effect of cryopreservation on sperm quality and fertility. InTech: Artificial Insemination in Farm Animals; 2011.

    Book  Google Scholar 

  43. Upadhyay VR, Ramesh V, Dewry RK, Kumar G, Raval K, Patoliya P. Implications of cryopreservation on structural and functional attributes of bovine spermatozoa: an overview. Andrologia. 2021;53(8).

  44. Palomar Rios A, Gascón A, Martínez JV, Balasch S, Molina BI. Sperm preparation after freezing improves motile sperm count, motility, and viability in frozen-thawed sperm compared with sperm preparation before freezing-thawing process. J Assist Reprod Genet. 2018;35:237–45.

    Article  CAS  PubMed  Google Scholar 

  45. Mbaye MM, Khalfi B El, Louanjli N, Saadani B, Kaarouch I, Madkour A, et al. Seminal cell-free DNA test for the management of male infertility. Annu Res Rev Biol. 2019;1–10.

  46. Mbaye MM, El KB, Zakaria A, Zakaria M, Louanjli N, Soukri A. Circulating nucleic acids: potential biomarkers of male infertility. Recent Research Advances in Biology. 2021;11:17–28.

    Google Scholar 

  47. Muiño R, Rivera MM, Rigau T, Rodriguez-Gil JE, Peña AI. Effect of different thawing rates on post-thaw sperm viability, kinematic parameters and motile sperm subpopulations structure of bull semen. Anim Reprod Sci. 2008;109:50–64.

    Article  PubMed  Google Scholar 

  48. Russell DF, Baqir S, Bordignon J, Betts DH. The impact of oocyte maturation media on early bovine embryonic development. Mol Reprod Dev. 2006;73:1255–70.

    Article  CAS  PubMed  Google Scholar 

  49. Bernal SM, Heinzmann J, Herrmann D, Timmermann B, Baulain U, Großfeld R, et al. Effects of different oocyte retrieval and in vitro maturation systems on bovine embryo development and quality. Zygote. 2015;23:367–77.

    Article  CAS  Google Scholar 

  50. Pontelo TP, Franco MM, Kawamoto TS, Caixeta FMC, de Oliveira LL, Kussano NR, et al. Histone deacetylase inhibitor during in vitro maturation decreases developmental capacity of bovine oocytes. PLoS ONE. 2021;16:e0247518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guimarães ALS, Pereira SA, Leme LO, Dode MAN. Evaluation of the simulated physiological oocyte maturation system for improving bovine in vitro embryo production. Theriogenology. 2015;83:52–7.

    Article  PubMed  Google Scholar 

  52. Marques T, da Silva SE, Diesel T, Leme L, Martins C, Dode M, et al. Melatonin reduces apoptotic cells, SOD2 and HSPB1 and improves the in vitro production and quality of bovine blastocysts. Reprod Domest Anim. 2018;53:226–36.

    Article  CAS  PubMed  Google Scholar 

  53. Fidelis AAG, de Oliveira Fernandes G, Melo FR, Leme L de O, Adona PR, Kawamoto TS, et al. Ethanolic extract of dried leaves from the Cerrado biome increases the cryotolerance of bovine embryos produced in vitro. Oxid Med Cell Longev. 2020;2020:1–16.

  54. Machado GM, Carvalho JO, Filho ES, Caixeta ES, Franco MM, Rumpf R, et al. Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology. 2009;71:1289–97.

    Article  CAS  PubMed  Google Scholar 

  55. Al Naib A, Hanrahan JP, Lonergan P, Fair S. In vitro assessment of sperm from bulls of high and low field fertility. Theriogenology. 2011;76:161–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior —Brazil (CAPES) and Embrapa, Brazil. Margot Alves Nunes Dode and Maurício Machaim Franco were CNPq research fellows.

Funding

This study was financially supported by a grant from the Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF — grant no. 019300001128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot A. N. Dode.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 200 KB)

Supplementary file2 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dode, M.A.N., Capobianco, N., Vargas, L.N. et al. Seminal cell–free DNA as a potential marker for in vitro fertility of Nellore bulls. J Assist Reprod Genet 41, 1357–1370 (2024). https://doi.org/10.1007/s10815-024-03068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03068-y

Keywords

Navigation